192
Views
6
CrossRef citations to date
0
Altmetric
Articles

An inverse meshfree thermoelastic analysis for identification of temperature-dependent thermal and mechanical material properties

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1165-1188 | Received 26 Mar 2020, Accepted 24 May 2020, Published online: 19 Jun 2020

References

  • J. Taler et al., “Thermal stress monitoring in thick-walled pressure components based on the solutions of the inverse heat conduction problems,” J. Thermal Stresses, vol. 41, no. 10–12, pp. 1501–1524, 2018. DOI: 10.1080/01495739.2018.1520621.
  • A. Khosravifard, A. Razavi, and M. R. Hematiyan, “An inverse meshfree method for heat flux identification based on strain measurement,” Int. J. Thermal Sci., vol. 144, pp. 50–66, 2019. DOI: 10.1016/j.ijthermalsci.2019.06.001.
  • A. Mallick, D. K. Prasad, and P. P. Behera, “Stresses in radiative annular fin under thermal loading and its inverse modeling using sine cosine algorithm (SCA),” J. Thermal Stresses, vol. 42, no. 4, pp. 401–415, 2019. DOI: 10.1080/01495739.2018.1480326.
  • C. H. Huang and M. N. Özişik, “Direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A Appl., vol. 20, no. 1, pp. 95–110, 1991. DOI: 10.1080/10407789108944811.
  • C. H. Huang and Y. Jan-Yuan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer, vol. 38, no. 18, pp. 3433–3441, 1995. DOI: 10.1016/0017-9310(95)00059-I.
  • S. Kim, M. C. Kim, and K. Y. Kim, “An integral approach to the inverse estimation of temperature-dependent thermal conductivity without internal measurements,” Int. Commun. Heat Mass Transfer, vol. 29, no. 1, pp. 107–113, 2002. DOI: 10.1016/S0735-1933(01)00329-3.
  • J. Zueco, F. Alhama, and C. F. González-Fernández, “Inverse determination of temperature dependent thermal conductivity using network simulation method,” J. Mater. Process. Technol., vol. 174, no. 1-3, pp. 137–144, 2006. DOI: 10.1016/j.jmatprotec.2005.03.031.
  • S. Y. Zhao, B. M. Zhang, S. Y. Du, and X. D. He, “Inverse identification of thermal properties of fibrous insulation from transient temperature measurements,” Int. J. Thermophys., vol. 30, no. 6, pp. 2021–2035, 2009. DOI: 10.1007/s10765-009-0680-5.
  • M. Mierzwiczak and J. A. Kołodziej, “The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem,” Int. J. Heat Mass Transfer, vol. 54, no. 4, pp. 790–796, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.10.024.
  • M. Cui, X. Gao, and J. Zhang, “A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems,” Int. J. Thermal Sci., vol. 58, pp. 113–119, 2012. DOI: 10.1016/j.ijthermalsci.2012.02.024.
  • M. Cui, Q. Zhu, and X. Gao, “A modified conjugate gradient method for transient nonlinear inverse heat conduction problems: a case study for identifying temperature-dependent thermal conductivities,” J. Heat Transfer, vol. 136, no. 9, p. 091301, 2014. DOI: 10.1115/1.4027771.
  • S. C. Sun, H. Qi, X. Y. Yu, Y. T. Ren, and L. M. Ruan, “Inverse identification of temperature-dependent thermal properties using improved Krill Herd algorithm,” Int. J. Thermophys., vol. 39, no. 11, p. 121, 2018. DOI: 10.1007/s10765-018-2442-8.
  • Y. Zhou and X. X. Hu, “Two methods for estimation of temperature-dependent thermal conductivity based on constant element approximation,” Int. J. Thermal Sci., vol. 135, pp. 104–116, 2019. DOI: 10.1016/j.ijthermalsci.2018.09.008.
  • X. M. Wang, L. S. Zhang, C. Yang, N. Liu, and W. L. Cheng, “Estimation of temperature-dependent thermal conductivity and specific heat capacity for charring ablators,” Int. J. Heat Mass Transfer, vol. 129, pp. 894–902, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.014.
  • F. G. Yuan, X. Cai, and M. N. Özisik, “Determination of elastic constants by inverse analysis,” Inverse Probl. Eng., vol. 3, no. 1–3, pp. 1–19, 1996. DOI: 10.1080/174159796088027612.
  • G. Geymonat and S. Pagano, “Identification of mechanical properties by displacement field measurement: a variational approach,” Meccanica, vol. 38, no. 5, pp. 535–545, 2003. [Mismatch] DOI: 10.1023/A:1024766911435.
  • Y. Shi, H. Sol, and H. Hua, “Material parameter identification of sandwich beams by an inverse method,” J. Sound Vibration, vol. 290, no. 3–5, pp. 1234–1255, 2006. DOI: 10.1016/j.jsv.2005.05.026.
  • D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck, “Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens,” Int. J. Solids Struct., vol. 44, no. 5, pp. 1643–1656, 2007. DOI: 10.1016/j.ijsolstr.2006.06.050.
  • T. Furukawa and J. W. Pan, “Stochastic identification of elastic constants for anisotropic materials,” Int. J. Numer. Meth. Eng., vol. 81, no. 4, pp. 429–452, 2010. DOI: 10.1002/nme.2700.
  • M. R. Hematiyan, A. Khosravifard, Y. C. Shiah, and C. L. Tan, “Identification of material parameters of two-dimensional anisotropic bodies using an inverse multi-loading boundary element technique,” Comp. Model. Eng. Sci., vol. 87, no. 1, p. 55, 2012.
  • J. A. Infante, M. Molina-Rodríguez, and A. M. Ramos, “On the identification of a thermal expansion coefficient,” Inverse Probl. Sci. Eng., vol. 23, no. 8, pp. 1405–1424, 2015. DOI: 10.1080/17415977.2015.1032274.
  • M. R. Hematiyan, A. Khosravifard, and Y. C. Shiah, “A new stable inverse method for identification of the elastic constants of a three-dimensional generally anisotropic solid,” Int. J. Solids Struct., vol. 106–107, pp. 240–250, 2017. DOI: 10.1016/j.ijsolstr.2016.11.009.
  • M. A. Nematollahi, B. Hasanshahi, M. Eftekhari, and A. A. Safavi, “Material properties identification of a piezoelectric beam using inverse method,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 234, no. 7, pp. 1351–1365, 2020. DOI: 10.1177/0954406219891746.
  • M. R. Eslami et al., Theory of Elasticity and Thermal Stresses, Vol. 197. Dordrecht: Springer, 2013, p. 786.
  • N. Noda, R. B. Hetnarski, and Y. Tanigawa, Thermal Stresses, New York, NY, USA: Taylor & Francis, 2003, p. 260.
  • A. Khosravifard, M. R. Hematiyan, and L. Marin, “Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method,” Appl. Math. Modelling, vol. 35, no. 9, pp. 4157–4174, 2011. DOI: 10.1016/j.apm.2011.02.039.
  • N. Zhao and H. Ren, “The interpolating element-free Galerkin method for 2D transient heat conduction problems,” Math. Prob. Eng., vol. 2014, pp. 1–9, 2014. DOI: 10.1155/2014/712834.
  • J. N. Reddy, An Introduction to the Finite Element Method. New York, NY, USA, 1993, p. 27.
  • G. R. Liu and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media, 2005.
  • A. Khosravifard and M. R. Hematiyan, “Nonlinear transient thermo-mechanical analysis of functionally graded materials by an improved meshless radial point interpolation method,” presented at the 11th Int. Conf. on Boundary Element and Meshless Techniques XI, Berlin, Germany, 2010, p. 245.
  • R. A. Akbari, A. Bagri, S. P. Bordas, and T. Rabczuk, “Analysis of thermoelastic waves in a two-dimensional functionally graded materials domain by the meshless local Petrov-Galerkin (MLPG) method,” Comp. Model. Eng. Sci., vol. 65, no. 1, p. 27, 2010.
  • Z. Kazemi and M. R. Hematiyan, “Inverse determination of time-dependent loads in viscoplastic deformations using strain measurements in the deformed configuration,” Int. J. Appl. Mech., vol. 10, no. 5, p. 1850057, 2018. DOI: 10.1142/S1758825118500576.
  • Z. Kazemi, M. R. Hematiyan, and Y. C. Shiah, “Load identification for viscoplastic materials with some unknown material parameters,” Int. J. Mech. Sci., vol. 153–154, pp. 164–177, 2019. DOI: 10.1016/j.ijmecsci.2019.01.045.
  • C. Sun, Y. Zhou, J. Chen, and H. Miao, “Modeling and experimental identification of contact pressure and friction for the analysis of non-conforming elastic contact,” Int. J. Mech. Sci., vol. 133, pp. 449–456, 2017. DOI: 10.1016/j.ijmecsci.2017.09.007.
  • Z. Kazemi, M. R. Hematiyan, and Y. C. Shiah, “An efficient load identification for viscoplastic materials by an inverse meshfree analysis,” Int. J. Mech. Sci., vol. 136, pp. 303–312, 2018. DOI: 10.1016/j.ijmecsci.2017.12.050.
  • M. Hajhashemkhani, M. R. Hematiyan, and S. Goenezen, “Identification of hyper-viscoelastic material parameters of a soft member connected to another unidentified member by applying a dynamic load,” Int. J. Solids Struct., vol. 165, pp. 50–62, 2019. DOI: 10.1016/j.ijsolstr.2019.01.032.
  • B. Jamshidi, M. R. Hematiyan, M. Mahzoon, and Y. C. Shiah, “Load identification for a viscoelastic solid by an accurate meshfree sensitivity analysis,” Eng. Struct., vol. 203, p. 109895, 2020. DOI: 10.1016/j.engstruct.2019.109895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.