175
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermo-elasto-plasto-dynamics of ultrafast optical ablation in polycrystalline metals. Part I: Theoretical formulation

ORCID Icon & ORCID Icon
Pages 163-179 | Received 10 Jul 2020, Accepted 02 Sep 2020, Published online: 23 Oct 2020

References

  • L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C, vol. 113, no. 27, pp. 11892–11906, 2009.
  • D. S. Ivanov et al., “Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer,” Appl. Phys. A, vol. 123, no. 12, pp. 744, 2017.
  • B. Rethfeld, K. Sokolowski-Tinten, D. Von der Linde, and S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation,” Phys. Rev. B, vol. 65, no. 9, pp. 092103, 2002.
  • J. Huang, Y. Zhang, J. K. Chen, and M. Yang, “Modeling of ultrafast phase change processes in a thin metal film irradiated by femtosecond laser pulse trains,” J. Heat Transf., vol. 133, no. 3, pp. 031003, 2011.
  • T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom, vol. 31, no. 1, pp. 90–118, 2016.
  • N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys. A, vol. 81, no. 2, pp. 345–356, 2005.
  • C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B, vol. 72, no. 16, pp. 165415, 2005.
  • X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D. Appl. Phys., vol. 46, no. 33, pp. 335501, 2013.
  • S. Nolte et al., “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B, vol. 14, no. 10, pp. 2716–2722, 1997.
  • Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Ablation and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys., vol. 45, no. 7, pp. 5791–5794, 2006.
  • D. Bäuerle, “Ultrashort-Pulse Laser Ablation,” in Laser Processing and Chemistry; Springer, 2011; pp. 279–313.
  • K. Sokolowski-Tinten et al., “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett., vol. 81, no. 1, pp. 224–227, 1998.
  • J. Cheng et al., “A review of ultrafast laser materials micromachining,” Optics Laser Technol., vol. 46, pp. 88–102, 2013.
  • D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B, vol. 67, no. 18, pp. 184102, 2003.
  • F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express, vol. 22, no. 10, pp. 12200–12210, 2014. DOI: 10.1364/OE.22.012200.
  • J. Liu et al., “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express, vol. 26, no. 5, pp. 6302–6315, 2018. DOI: 10.1364/OE.26.006302.
  • C. A. Zuhlke, G. D. Tsibidis, T. Anderson, E. Stratakis, G. Gogos, and D. R. Alexander, “Investigation of femtosecond laser induced ripple formation on copper for varying incident angle,” AIP Adv., vol. 8, no. 1, pp. 015212, 2018. DOI: 10.1063/1.5020029.
  • S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express, vol. 3, no. 10, pp. 1705–1715, 2013.
  • G. D. Tsibidis, E. Stratakis, and K. E. Aifantis, “Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions,” J. Appl. Phys., vol. 111, no. 5, pp. 053502, 2012.
  • X. Zhao and Y. C. Shin, “A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals,” J. Phys. D. Appl. Phys., vol. 45, no. 10, pp. 105201, 2012.
  • X. Qi and C. S. Suh, “Elasto-viscoplastic response of silicon to femtosecond laser heating at elevated temperature,” J. Therm. Stress., vol. 34, no. 2, pp. 115–137, 2011.
  • S. Tao and B. Wu, “The effect of emitted electrons during femtosecond laser–metal interactions: A physical explanation for coulomb explosion in metals,” Appl. Surface Sci., vol. 298, pp. 90–94, 2014.
  • H. M. Van Driel, “Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-μm picosecond laser pulses,” Phys. Rev. B, vol. 35, no. 15, pp. 8166–8176, 1987.
  • J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf., vol. 48, no. 3–4, pp. 501–509, 2005.
  • X. Qi and C. S. Suh, “Generalized thermo-elastodynamics for semiconductor material subject to ultrafast laser heating. Part I: Model description and validation,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 41–47, 2010.
  • X. Mao and C. S. Suh, “Ultrashort pulse-induced elastodynamics in polycrystalline materials. Part I: Model validation,” J. Therm. Stress., vol. 42, no. 3, pp. 374–387, 2019.
  • N. Haustrup and G. M. O’Connor, “Impact of laser wavelength on the emission of electrons and ions from thin gold films during femtosecond laser ablation,” Appl. Surf. Sci., vol. 302, pp. 1–5, 2014.
  • J. P. Geindre et al., “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt Lett., vol. 19, no. 23, pp. 1997–1999, 1994. DOI: 10.1364/ol.19.001997.
  • D. M. Riffe et al., “Femtosecond thermionic emission from metals in the space-charge-limited regime,” J. Opt. Soc. Am. B, vol. 10, no. 8, pp. 1424–1435, 1993.
  • S. Amoruso et al., “Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets,” Appl. Phys. Lett., vol. 77, no. 23, pp. 3728–3730, 2000.
  • M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B, vol. 81, no. 11, pp. 115442, 2010.
  • H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: Evidence of ultra-fast Coulomb explosion,” Appl. Phys. A, vol. 83, no. 2, pp. 333–336, 2006.
  • X. Qi and C. S. Suh, “Ultrafast laser-induced elastodynamics in single crystalline silicon part I: Model formulation,” J. Therm. Stress., vol. 32, no. 5, pp. 477–493, 2009.
  • N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B, vol. 69, no. 5, pp. 054102, 2004.
  • J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys., vol. 251, no. 1–3, pp. 237–258, 2000.
  • J. H. Bechtel, W. L. Smith, and N. Bloembergen, “Two-photon photoemission from metals induced by picosecond laser pulses,” Phys. Rev. B, vol. 15, no. 10, pp. 4557–4563, 1977.
  • J. P. Girardeau-Montaut and C. Girardeau-Montaut, “Theory of ultrashort nonlinear multiphoton photoelectric emission from metals,” Phys. Rev. B Condens. Matter., vol. 51, no. 19, pp. 13560–13567, 1995. DOI: 10.1103/physrevb.51.13560.
  • G. Ferrini, F. Banfi, C. Giannetti, and F. Parmigiani, “Non-linear electron photoemission from metals with ultrashort pulses,” Nucl. Instrum. Methods Phys. Res. Section A, vol. 601, no. 1–2, pp. 123–131, 2009.
  • Z. Chen and S. S. Mao, “Femtosecond laser-induced electronic plasma at metal surface,” Appl. Phys. Lett., vol. 93, no. 5, pp. 051506, 2008.
  • J. P. Girardeau‐Montaut, C. Girardeau‐Montaut, S. D. Moustaizis, and C. Fotakis. “Nonlinearity and inversion of femtosecond single‐and two‐photon photoelectric emission sensitivities from gold,” Appl. Phys. Lett., vol. 64, no. 26, pp. 3664–3666, 1994.
  • E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas, vol. 9, no. 3, pp. 949–957, 2002.
  • B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B, vol. 13, no. 2, pp. 459–468, 1996.
  • X. Mao and C. S. Suh, “Generalized thermo-elastodynamics for polycrystalline metallic thin films in response to ultrafast laser heating,” J. Thermophys. Heat Transf., vol. 33, no. 1, pp. 106–116, 2019.
  • J. K. Chen and J. E. Beraun, “Numerical study of ultrashort laser pulse interactions with metal films,” Numer. Heat Transf. Part A. Appl., vol. 40, no. 1, pp. 1–20, 2001.
  • T. Ummenhofer and J. Medgenberg, “Numerical modelling of thermoelasticity and plasticity in fatigue-loaded low carbon steels: Studies for a thermographic approach,” Quant. InfraRed Thermogr. J., vol. 3, no. 1, pp. 71–91, 2006.
  • K. S. Bhalla, A. T. Zehnder, and X. Han, “Thermomechanics of slow stable crack growth: Closing the loop between experiments and computational modeling,” Eng. Fract. Mech., vol. 70, no. 17, pp. 2439–2458, 2003.
  • O. W. Dillon, Jr, “Coupled thermoplasticity,” J. Mech. Phys. Solids, vol. 11, no. 1, pp. 21–33, 1963.
  • A. Rusinek and J. R. Klepaczko, “Experiments on heat generated during plastic deformation and stored energy for TRIP steels,” Mater. Des., vol. 30, no. 1, pp. 35–48, 2009.
  • S.-S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A, vol. 69, no. 1, pp. S99–S107, 1999.
  • L. Anand, “Constitutive equations for the rate-dependent deformation of metals at elevated temperatures,” J. Eng. Mater. Technol., vol. 104, no. 1, pp. 12–17, 1982.
  • G. Z Voyiadjis and R. K. A. Al-Rub, “Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity,” Int. J. Plast., vol. 19, no. 12, pp. 2121–2147, 2003.
  • A. A. Burenin, E. P. Dats, and E. V. Murashkin, “Formation of the residual stress field under local thermal actions,” Mech. Solids, vol. 49, no. 2, pp. 218–224, 2014.
  • R. Halama, J. Sedlák, and M. Šofer, “Phenomenological modelling of cyclic plasticity,” in Numerical Modelling, P. Miidla, Ed. Rijeka, Croatia: InTech, 2012, pp. 329–354.
  • P. J. Armstrong and C. O. Frederick, A Mathematical Representation of the Multiaxial Bauschinger Effect, vol. 731. Berkeley: Central Electricity Generating Board [and] Berkeley Nuclear Laboratories, Research & Development Department, 1966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.