266
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Thermoelastic damping in rectangular microplate/nanoplate resonators based on modified nonlocal strain gradient theory and nonlocal heat conductive law

, ORCID Icon, &
Pages 690-714 | Received 01 Jun 2020, Accepted 27 Feb 2021, Published online: 13 Apr 2021

References

  • R. Aigner et al., “Advancement of MEMS into RF-filter applications,” Digest. Int. Electron Devices Meeting, pp. 897–900, Dec. 2002. DOI: 10.1109/IEDM.2002.1175981.
  • R. Novitski, B. Z. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Rev. A, vol. 85, no. 2, pp. 023813, 2012. DOI: 10.1103/PhysRevA.85.023813.
  • H. Wang and Y. Li, “Dynamic analysis of the resonator for resonant accelerometer,” Sens. Rev., vol. 38, no. 4, pp. 478–485, 2018. DOI: 10.1108/SR-11-2017-0239.
  • T. V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators,” IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, pp. 13–16, Jun. 1990. DOI: 10.1109/SOLSEN.1990.109810.
  • C. Zener, “Internal friction in solids. I. Theory of internal friction in reeds,” Phys. Rev., vol. 52, no. 3, pp. 230–235, 1937. DOI: 10.1103/PhysRev.52.230.
  • C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev., vol. 53, no. 1, pp. 90–99, 1938. DOI: 10.1103/PhysRev.53.90.
  • R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600–5609, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • S. Prabhakar and S. Vengallatore, “Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction,” J. Microelectromech. Syst., vol. 17, no. 2, pp. 494–502, 2008. DOI: 10.1109/JMEMS.2008.916316.
  • K. Tunvir, C. Q. Ru, and A. Mioduchowski, “Effect of cross-sectional shape on thermoelastic dissipation of micro/nano elastic beams,” Int. J. Mech. Sci., vol. 62, no. 1, pp. 77–88, 2012. DOI: 10.1016/j.ijmecsci.2012.05.015.
  • A. H. Nayfeh and M. I. Younis, “Modeling and simulations of thermoelastic damping in microplates,” J. Micromech. Microeng., vol. 14, no. 12, pp. 1711–1717, 2004. DOI: 10.1088/0960-1317/14/12/016.
  • Y. X. Sun and H. Tohmyoh, “Thermoelastic damping of the axisymmetric vibration of circular plate resonators,” J. Sound Vib., vol. 319, no. 12, pp. 392–405, 2009. DOI: 10.1016/j.jsv.2008.06.017.
  • Y. X. Sun and M. Saka, “Thermoelastic damping in micro-scale circular plate resonators,” J. Sound Vib., vol. 329, no. 3, pp. 328–337, 2010. DOI: 10.1016/j.jsv.2009.09.014.
  • P. Li, Y. M. Fang, and R. F. Hu, “Thermoelastic damping in rectangular and circular microplate resonators,” J. Sound Vib., vol. 331, no. 3, pp. 721–733, 2012. DOI: 10.1016/j.jsv.2011.10.005.
  • S. B. Kim, Y. H. Na, and J. H. Kim, “Thermoelastic damping effect on in-extensional vibration of rotating thin ring,” J. Sound Vib., vol. 329, no. 9, pp. 1227–1234, 2010. DOI: 10.1016/j.jsv.2009.12.014.
  • Y. M. Fang and P. Li, “Thermoelastic damping in thin microrings with two-dimensional heat conduction,” Phys. E, vol. 69, pp. 198–206, 2015. DOI: 10.1016/j.physe.2015.01.039.
  • W.-T. Hsu, "Resonator miniaturization for oscillators,” 2008 IEEE International Frequency Control Symposium, pp. 392–395, Honolulu, HI, USA, May 2008. DOI: 10.1109/FREQ.2008.4623026.
  • N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: Theory and experiment,” Acta Metall. Mater., vol. 42, no. 2, pp. 475–487, 1994. DOI: 10.1016/0956-7151(94)90502-9.
  • Q. Ma and D. R. Clarke, “Size dependent hardness of silver single crystals,” J. Mater. Res., vol. 10, no. 4, pp. 853–863, 1995. DOI: 10.1557/JMR.1995.0853.
  • A. W. McFarland and J. S. Colton, “Role of material microstructure in plate stiffness with relevance to microcantilever sensors,” J. Micromech. Microeng., vol. 15, no. 5, pp. 1060–1067, 2005. DOI: 10.1088/0960-1317/15/5/024.
  • D. Y. Tzou, Macro- To Microscale Heat Transfer: The Lagging Behavior. West Sussex: Wiley, 2014.
  • A. C. Eringen, Nonlocal Continuum Field Theories. New York, NY: Springer, 2002.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • R. D. Mindlin, “Micro-structure in linear elasticity,” Arch. Rational Mech. Anal., vol. 16, no. 1, pp. 51–78, 1964. DOI: 10.1007/BF00248490.
  • E. C. Aifantis, “On the role of gradients in the localization of deformation and fracture,” Int. J. Eng. Sci., vol. 30, no. 10, pp. 1279–1299, 1992. DOI: 10.1016/0020-7225(92)90141-3.
  • C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • M. Shaat, “A general nonlocal theory and its approximations for slowly varying acoustic waves,” Int. J. Mech. Sci., vol. 130, pp. 52–63, 2017. DOI: 10.1016/j.ijmecsci.2017.05.038.
  • M. Shaat and A. Abdelkefi, “New insights on the applicability of Eringen’s nonlocal theory,” Int. J. Mech. Sci., vol. 121, pp. 67–75, 2017. DOI: 10.1016/j.ijmecsci.2016.12.013.
  • R. Barretta and F. Marotti de Sciarra, “Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams,” Int. J. Eng. Sci., vol. 130, pp. 187–198, 2018. DOI: 10.1016/j.ijengsci.2018.05.009.
  • G. Romano, R. Barretta, M. Diaco, and F. Marotti de Sciarra, “Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams,” Int. J. Mech. Sci., vol. 121, pp. 151–156, 2017. DOI: 10.1016/j.ijmecsci.2016.10.036.
  • A. Apuzzo, R. Barretta, S. A. Faghidian, R. Luciano, and F. Marotti de Sciarra, “Free vibrations of elastic beams by modified nonlocal strain gradient theory,” Int. J. Eng. Sci., vol. 133, pp. 99–108, 2018. DOI: 10.1016/j.ijengsci.2018.09.002.
  • R. Zaera, Ó. Serrano, and J. Fernández-Sáez, “On the consistency of the nonlocal strain gradient elasticity,” Int. J. Eng. Sci., vol. 138, pp. 65–81, 2019. DOI: 10.1016/j.ijengsci.2019.02.004.
  • R. Barretta and F. Marotti de Sciarra, “Variational nonlocal gradient elasticity for nano-beams,” Int. J. Eng. Sci., vol. 143, pp. 73–91, 2019. DOI: 10.1016/j.ijengsci.2019.06.016.
  • P. Zhang and H. Qing, “Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model,” Acta Mech., vol. 231, no. 12, pp. 5251–5276, 2020. DOI: 10.1007/s00707-020-02815-3.
  • M. Chester, “Second sound in solids,” Phys. Rev., vol. 131, no. 5, pp. 2013–2015, 1963. DOI: 10.1103/PhysRev.131.2013.
  • R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, no. 2, pp. 766–778, 1966. DOI: 10.1103/PhysRev.148.766.
  • G. Rezazadeh, A. S. Vahdat, S. Tayefeh-Rezaei, and C. Cetinkaya, “Thermoelastic damping in a micro-beam resonator using modified couple stress theory,” Acta Mech., vol. 223, no. 6, pp. 1137–1152, 2012. DOI: 10.1007/s00707-012-0622-3.
  • R. Razavilar, R. A. Alashti, and A. Fathi, “Investigation of thermoelastic damping in rectangular microplate resonator using modified couple stress theory,” Int. J. Mech. Mater. Des., vol. 12, no. 1, pp. 39–51, 2016. DOI: 10.1007/s10999-014-9286-6.
  • Z. Y. Zhong, W. M. Zhang, G. Meng, and M. Y. Wang, “Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory,” J. Microelectromech. Syst., vol. 24, no. 2, pp. 431–445, 2015. DOI: 10.1109/JMEMS.2014.2332757.
  • S. Rashahmadi and S. A. Meguid, “Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory,” Acta Mech., vol. 230, no. 3, pp. 771–785, 2019. DOI: 10.1007/s00707-018-2281-5.
  • F. L. Guo, G. Q. Wang, and G. A. Rogerson, “Analysis of thermoelastic damping in micro- and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory,” Int. J. Eng. Sci., vol. 60, pp. 59–65, 2012. DOI: 10.1016/j.ijengsci.2012.04.007.
  • F. L. Guo, “Thermo-elastic dissipation of microbeam resonators in the framework of generalized thermo-elasticity theory,” J. Therm. Stresses, vol. 36, no. 11, pp. 1156–1168, 2013. DOI: 10.1080/01495739.2013.818903.
  • H. Zhou, P. Li, W. Zuo, and Y. Fang, “Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators,” Appl. Math. Model., vol. 79, pp. 31–51, 2020. DOI: 10.1016/j.apm.2019.11.027.
  • H. Zhou and P. Li, “Dual-phase-lagging thermoelastic damping and frequency shift of micro/nano-ring resonators with rectangular cross-section,” Thin Wall Struct., vol. 159, pp. 107309, 2021. DOI: 10.1016/j.tws.2020.107309.
  • H. L. Zhang, T. Kim, G. Choi, and H. H. Cho, “Thermoelastic damping in micro- and nanomechanical beam resonators considering size effects,” Int. J. Heat Mass Transf., vol. 103, pp. 783–790, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.044.
  • Y. J. Yu, X. G. Tian, and J. Liu, “Size-dependent damping of a nanobeam using nonlocal thermoelasticity: Extension of Zener, Lifshitz, and Roukes’ damping model,” Acta Mech., vol. 228, no. 4, pp. 1287–1302, 2017. DOI: 10.1007/s00707-016-1769-0.
  • W. M. Deng, L. Li, Y. J. Hu, X. L. Wang, and X. B. Li, “Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction,” J. Therm. Stresses, vol. 41, no. 9, pp. 1182–1200, 2018. DOI: 10.1080/01495739.2018.1466669.
  • V. Borjalilou and M. Asghari, “Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model,” Acta Mech., vol. 229, no. 9, pp. 3869–3884, 2018. DOI: 10.1007/s00707-018-2197-0.
  • V. Borjalilou and M. Asghari, “Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory,” Int. J. Appl. Mech., vol. 11, no. 01, pp. 1950007, 2019. DOI: 10.1142/S1758825119500078.
  • V. Borjalilou, M. Asghari, and E. Taati, “Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect,” J. Vib. Control, vol. 26, no. 1112, pp. 1042–1053, 2020. DOI: 10.1177/1077546319891334.
  • V. Borjalilou and M. Asghari, “Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity,” J. Therm. Stresses, vol. 43, no. 4, pp. 401–420, 2020. DOI: 10.1080/01495739.2020.1722771.
  • A. Farajpour, C. Q. Howard, and W. S. P. Robertson, “On size-dependent mechanics of nanoplates,” Int. J. Eng. Sci., vol. 156, pp. 103368, 2020. DOI: 10.1016/j.ijengsci.2020.103368.
  • N. Noda, R. B. Hetnarski, and Y. Tanigawa, Thermal Stresses. New York, NY: Taylor & Francis, 2002.
  • C. Cattaneo, “A form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Compte Rendus, vol. 247, pp. 431–433, 1958.
  • P. Vernotte, “Les paradoxes de la théorie continue de léquation de la chaleur,” Compte Rendus, vol. 246, pp. 3154–3155, 1958.
  • E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications. New York, NY: Marcel Dekker, 2001.
  • J. E. Bishop and V. K. Kinra, “Elastothermodynamic damping in laminated composites,” Int. J. Solids Struct., vol. 34, no. 9, pp. 1075–1092, 1997. DOI: 10.1016/S0020-7683(96)00085-6.
  • L. Li, H. Tang, and Y. Hu, “The effect of thickness on the mechanics of nanobeams,” Int. J. Eng. Sci., vol. 123, pp. 81–91, 2018. DOI: 10.1016/j.ijengsci.2017.11.021.
  • J. N. Sharma and R. Sharma, “Damping in micro-scale generalized thermoelastic circular plate resonators,” Ultrasonics, vol. 51, no. 3, pp. 352–358, 2011. DOI: 10.1016/j.ultras.2010.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.