262
Views
10
CrossRef citations to date
0
Altmetric
Articles

Buckling and vibro-acoustic characteristics of the trapezoidal corrugated sandwich plate in thermal environment

, &
Pages 807-828 | Received 03 Sep 2020, Accepted 10 Apr 2021, Published online: 07 Jun 2021

References

  • X. Wang et al., “Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets,” Compos. Struct., vol. 251, pp. 112591, 2020. DOI: 10.1016/j.compstruct.2020.112591.
  • J. S. Yang et al., “Vibration-based damage diagnosis of composite sandwich panels with bi-directional corrugated lattice cores,” Compos. Pt. A-Appl. Sci. Manuf., vol. 131, pp. 105781, 2020.
  • A. Cui et al., “Performance analysis and optimization of foam-filled aluminum-alloy corrugated sandwich panel structure for vehicle body,” Aut. Eng., vol. 41, no. 10, pp. 1221–1227, 2019.
  • N. Elzayady and E. Elghandour, “Compression capacity of corrugated core hybrid composite sandwich structure,” Key Eng. Mater., vol. 4830, no. 1642, pp. 47–53, 2019.
  • J. Lou, J. Yang, S. Kitipornchai, and H. Wu, “A dynamic homogenization model for long-wavelength wave propagation in corrugated sandwich plates,” Int. J. Mech. Sci., vol. 149, pp. 27–37, 2018. DOI: 10.1016/j.ijmecsci.2018.09.033.
  • P. Isaksson, A. Krusper, and P. A. Gradin, “Shear correction factors for corrugated core structures,” Compos. Struct., vol. 80, no. 1, pp. 123–130, 2007. DOI: 10.1016/j.compstruct.2006.04.066.
  • Y. J. Cheon and H. G. Kim, “An equivalent plate model for corrugated-core sandwich panels,” J. Mech. Sci. Technol., vol. 29, no. 3, pp. 1217–1223, 2015. DOI: 10.1007/s12206-015-0235-6.
  • M. Mohammadabadi, V. Yadama, and L. Smith, “The effect of plate theories and boundary conditions on the bending behavior of a biaxial corrugated core sandwich panel,” Compos. Struct., vol. 241, pp. 112133, 2020.
  • K. M. Liew, L. X. Peng, and S. Kitipornchai, “Vibration analysis of corrugated Reissner–Mindlin plates using a mesh-free Galerkin method,” Int. J. Mech. Sci., vol. 51, no. 9–10, pp. 642–652, 2009. DOI: 10.1016/j.ijmecsci.2009.06.005.
  • W. Z. Zhuang, C. Yang, and Z. G. Wu, “Modal and aeroelastic analysis of trapezoidal corrugated-core sandwich panels in supersonic flow,” Int. J. Mech. Sci., vol. 157–158, pp. 267–281, 2019. DOI: 10.1016/j.ijmecsci.2019.04.052.
  • Z. K. Guo, C. C. Liu, and F. M. Li, “Vibration analysis of sandwich plates with lattice truss core,” Mech. Adv. Mater. Struct., vol. 26, no. 5, pp. 424–429, 2019. DOI: 10.1080/15376494.2017.1400616.
  • M. Bennoun, M. S. A. Houari, and M. Tounsi, “A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates,” Mech. Adv. Mater. Struct., vol. 23, no. 4, pp. 423–431, 2016. DOI: 10.1080/15376494.2014.984088.
  • S. W. Ren, F. X. Xin, and T. J. Lu, “Vibroacoustic performance of simply supported honeycomb sandwich panels,” Chin. J. Theor. Appl. Mech., vol. 45, no. 3, pp. 349–358, 2013.
  • D. W. Wang, L. Ma, X. T. Wang, and G. Qi, “Sound transmission loss of sandwich plate with pyramidal truss cores,” J. Sandwich Struct. Mater., vol. 22, no. 3, pp. 551–571, 2020. DOI: 10.1177/1099636218759683.
  • Y. X. Chen, F. L. Li, and Y. X. Hao, “Analysis of vibration and sound insulation characteristics of functionally graded sandwich plates,” Compos. Struct., vol. 249, pp. 112515, 2020.
  • Y. Q. Wang and H. L. Zhao, “Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method,” Arch. Appl. Mech., vol. 89, no. 11, pp. 2335–2349, 2019. DOI: 10.1007/s00419-019-01579-0.
  • Y. Q. Wang, Y. H. Wan, and J. W. Zu, “Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence,” Thin-Walled Struct., vol. 135, pp. 537–547, 2019. DOI: 10.1016/j.tws.2018.11.023.
  • N. Bendenia et al., “Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation,” Comput. Concr., vol. 26, no. 3, pp. 213–226, 2020.
  • O. Allam et al., “A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells,” Comput. Concr., vol. 26, no. 2, pp. 185–201, 2020.
  • A. Menasria et al., “A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions,” Steel Compos. Struct., vol. 36, no. 3, pp. 355–367, 2020.
  • M. Rabhi et al., “A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions,” Geomech. Eng., vol. 22, no. 2, pp. 119–132, 2020.
  • C. C. Sara et al., “A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach,” Geomech. Eng., vol. 21, no. 5, pp. 471–487, 2020.
  • M. C. Rahmani et al., “Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory,” Comput. Concr., vol. 25, no. 3, pp. 225–244, 2020.
  • J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stresses, vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.
  • M. Cinefra, E. Carrera, S. Brischetto, and S. Belouettar, “Thermo-mechanical analysis of functionally graded shells,” J. Therm. Stresses, vol. 33, no. 10, pp. 942–963, 2010. DOI: 10.1080/01495739.2010.482379.
  • Y. X. Li and K. P. Yu, “Vibration and acoustic responses of composite and sandwich panels under thermal environment,” Compos. Struct., vol. 131, pp. 1040–1049, 2015. DOI: 10.1016/j.compstruct.2015.06.037.
  • X. Y. Li, K. P. Yu, and R. Zhao, “Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment,” Appl. Acoust., vol. 132, pp. 82–96, 2018. DOI: 10.1016/j.apacoust.2017.11.010.
  • X. Y. Li, K. P. Yu, R. Zhao, J. Y. Han, and H. Y. Song, “Sound transmission loss of composite and sandwich panels in thermal environment,” Compos. Part. B Eng., vol. 133, pp. 1–14, 2018. DOI: 10.1016/j.compositesb.2017.09.023.
  • R. Zhao, K. P. Yu, and N. G. Cui, “Vibration response analysis of a composite sandwich plate under a time-varying thermal environment,” J.Vibr. Eng., vol. 31, no. 2, pp. 329–335, 2018.
  • P. Jeyaraj, C. Padmanabhan, and N. Ganesan, “Vibro-acoustic behavior of a multilayered viscoelastic sandwich plate under a thermal environment,” J. Sandwich Struct. Mater., vol. 13, no. 5, pp. 509–537, 2011. DOI: 10.1177/1099636211400129.
  • K. Khorshidi and M. Karimi, “Flutter analysis of sandwich plates with functionally graded face sheets in thermal environment,” Aerosp. Sci. Technol., vol. 95, pp. 105461, 2019.
  • S. Pandey and S. Pradyumna, “Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory,” Eur. J. Mech. A-Solids, vol. 51, pp. 55–66, 2015. DOI: 10.1016/j.euromechsol.2014.12.001.
  • S. Pandey and S. Pradyumna, “Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock,” J. Therm. Stresses, vol. 41, no. 5, pp. 543–567, 2018. DOI: 10.1080/01495739.2017.1422999.
  • Y. Q. Wang and J. W. Zu, “Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment,” Aerosp. Sci. Technol., vol. 69, pp. 550–562, 2017. vol DOI: 10.1016/j.ast.2017.07.023.
  • Y. Q. Wang, C. Ye, and J. W. Zu, “Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities,” Appl. Math. Mech., vol. 39, no. 11, pp. 1578–1604, 2018.
  • V. Bhagat, M. P. Arunkumar, and S. K. Jebabalan, “Vibrational characteristics of truss core sandwich panel under thermal environment: Effect of core topology,” Int. J. Dynam. Control, vol. 7, no. 3, pp. 808–822, 2019. DOI: 10.1007/s40435-018-0488-x.
  • M. Abualnour et al., “Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory,” Comput. Concr., vol. 24, no. 6, pp. 489–498, 2019.
  • N. Belbachir et al., “Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings,” Steel Compos. Struct., vol. 33, no. 1, pp. 81–92, 2019.
  • N. Belbachir et al., “Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory,” Smart. Struct. Syst., vol. 25, no. 4, pp. 409–422, 2020.
  • A. Boussoula et al., “A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates,” Smart. Struct. Syst., vol. 25, no. 2, pp. 197–218, 2020.
  • S. Refrafi et al., “Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations,” Comput. Concr., vol. 25, no. 4, pp. 311–325, 2020.
  • H. Matouk et al., “Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory,” Adv. Nano Res., vol. 8, no. 4, pp. 293–305, 2020.
  • A. Tounsi, S. U. Al-Dulaijan, and M. A. Al-Osta, “A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation,” Steel Compos. Struct., vol. 34, no. 4, pp. 511–524, 2020.
  • M. Aydogdu, “Comparison of various shear deformation theories for bending, buckling, and vibration of rectangular symmetric cross-ply plate with simply supported edges,” J. Compos Mater., vol. 40, no. 23, pp. 2143–2155, 2006. DOI: 10.1177/0021998306062313.
  • T. Fu, Z. Chen, H. Yu, Z. Wang, and X. Liu, “Free vibration of functionally graded sandwich plates based on nth-order shear deformation theory via differential quadrature method,” J. Sandwich Struct. Mater., vol. 22, no. 5, pp. 1660–1680, 2020. DOI: 10.1177/1099636218809451.
  • A. Mahi, E. A. Adda Bedia, and A. Tounsi, “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,” Appl. Math. Model., vol. 39, no. 9, pp. 2489–2508, 2015. DOI: 10.1016/j.apm.2014.10.045.
  • J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics. Waco, TX: John Wiley & Sons Inc., 2002.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells. Boca Raton, FL: CRC Press, 2004.
  • N. Atalla and F. Sgard, “Transmission loss of curved sandwich-composite panels with attached noise control materials,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. 2326–2339, 2011. DOI: 10.1121/1.3654307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.