96
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mathematical analysis of high-order three-phase-lagging models

ORCID Icon & ORCID Icon
Pages 865-885 | Received 05 Nov 2021, Accepted 26 Nov 2021, Published online: 13 Sep 2022

References

  • D. Y. Tzou, “A unified field approach for heat conduction from macro- to micro-scales,” J. Heat Transfer, vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Transfer, vol. 38, no. 17, pp. 3231–3240, 1995. DOI: 10.1016/0017-9310(95)00052-B.
  • D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys. Heat Transfer, vol. 9, no. 4, pp. 686–693, 1995. DOI: 10.2514/3.725.
  • D. Y. Tzou, Macro- To Microscale Heat Transfer: The Lagging Behavior. 2nd ed. Chichester: John Wiley and Sons, 2015. DOI: 10.1002/9781118818275.
  • R. Quintanilla, “Exponential stability in the dual-phase-lag heat conduction theory,” J. Non-Equilibr. Thermodyn., vol. 27, no. 3, pp. 217–227, 2002. DOI: 10.1515/JNETDY.2002.012.
  • C. O. Horgan and R. Quintanilla, “Spatial behaviour of solutions of the dual-phase-lag heat equation,” Math. Methods Appl. Sci., vol. 28, no. 1, pp. 43–57, 2005. DOI: 10.1002/mma.548.
  • R. Quintanilla and R. Racke, “A note on stability in dual-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 49, no. 7-8, pp. 1209–1213, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.016.
  • R. Quintanilla and R. Racke, “Qualitative aspects in dual-phase-lag thermoelasticity,” SIAM J. Appl. Math., vol. 66, no. 3, pp. 977–1001, 2006. DOI: 10.1137/05062860X.
  • R. Quintanilla and R. Racke, “Qualitative aspects in dual-phase-lag heat conduction,” Proc. R. Soc. A, vol. 463, no. 2079, pp. 659–674, 2007. DOI: 10.1098/rspa.2006.1784.
  • P. M. Jordan, W. Dai and R. E. Mickens, “A note on the delayed heat equation: Instability with respect to initial data,” Mech. Res. Commun., vol. 35, no. 6, pp. 414–420, 2008. DOI: 10.1016/j.mechrescom.2008.04.001.
  • R. Quintanilla, “A well-posed problem for the dual-phase-lag heat conduction,” J. Therm. Stresses, vol. 31, no. 3, pp. 260–269, 2008. DOI: 10.1080/01495730701738272.
  • K. Ramadan, “Semi-analytical solutions for the dual phase lag heat conduction in multilayered media,” Int. J. Therm. Sci., vol. 48, no. 1, pp. 14–25, 2009. DOI: 10.1016/j.ijthermalsci.2008.03.004.
  • A. H. Akbarzadeh and Z. T. Chen, “Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory,” Int. J. Thermophys., vol. 33, no. 6, pp. 1100–1125, 2012. DOI: 10.1007/s10765-012-1204-2.
  • N. Afrin, Y. Zhang and J. K. Chen, “Dual-phase lag behavior of a gas-saturated porous-medium heated by a short-pulsed laser,” Int. J. Therm. Sci., vol. 75, pp. 21–27, 2014. DOI: 10.1016/j.ijthermalsci.2013.07.019.
  • R. Quintanilla and R. Racke, “Spatial behavior in phase-lag heat conduction,” Differ. Integr. Equations, vol. 28, no. 3–4, pp. 291–308, 2015. DOI: Http://projecteuclid.org/euclid.die/1423055229.
  • S. Chiriţă, “On the time differential dual-phase-lag thermoelastic model,” Meccanica, vol. 52, no. 1–2, pp. 349–361, 2017. DOI: 10.1007/s11012-016-0414-2.
  • V. Zampoli, “Uniqueness theorems about high-order time differential thermoelastic models,” Ric. Mat., vol. 67, no. 2, pp. 929–950, 2018. DOI: 10.1007/s11587-018-0351-6.
  • V. Zampoli, “Some continuous dependence results about high-order time differential thermoelastic models,” J. Therm. Stresses, vol. 41, no. 7, pp. 827–846, 2018. DOI: 10.1080/01495739.2018.1439789.
  • V. Zampoli and S. Chiriţă, “On the depth of a thermomechanical signal in a dual-phase-lag deformable medium,” in Proceedings of the IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, 2018, pp. 1–6. DOI: 10.1109/EESMS.2018.8405816.
  • S. Chiriţă and V. Zampoli, “Spatial behavior of the dual-phase-lag deformable conductors,” J. Therm. Stresses, vol. 41, no. 10–12, pp. 1276–1296, 2018. DOI: 10.1080/01495739.2018.1479205.
  • V. Zampoli, “On the increase in signal depth due to high-order effects in micro- and nanosized deformable conductors,” Math. Probl. Eng., vol. 2019, pp. 1–11, 2019. DOI: 10.1155/2019/2629012.
  • V. Zampoli and A. Amendola, “Uniqueness, continuous dependence, and spatial behavior of the solution in linear porous thermoelasticity with two relaxation times,” J. Therm. Stresses, vol. 42, no. 12, pp. 1582–1602, 2019. DOI: 10.1080/01495739.2019.1654950.
  • M. Carini and V. Zampoli, “On the influence of voids on the depth of an external signal in thermoelasticity with two relaxation times,” Acta Mech., vol. 231, no. 1, pp. 363–371, 2020. DOI: 10.1007/s00707-019-02547-z.
  • S. Chiriţă and V. Zampoli, “Wave propagation in porous thermoelasticity with two delay times,” Math. Methods Appl. Sci., vol. 45, no. 3, pp. 1498–1512, 2022. DOI: 10.1002/mma.7869.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc. London A 432, 1991, pp. 171–194. DOI: 10.1098/rspa.1991.0012.
  • A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stresses, vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elast., vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • (a) A. E. Green and P. M. Naghdi, “A unified procedure for construction of theories of deformable media. I. Classical continuum physics,” Proc. R. Soc. Lond. A, vol. 448, no. 1934, pp. 335–356, 1995. DOI: 10.1098/rspa.1995.0020. (b) A. E. Green and P. M. Naghdi, “A unified procedure for construction of theories of deformable media. II. Generalized continua,” Proc. R. Soc. Lond. A, vol. 448, no. 1934, pp. 357–377, 1995. DOI: 10.1098/rspa.1995.0021. (c) A. E. Green and P. M. Naghdi, “A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua,” Proc. R. Soc. Lond. A, vol. 448, 1934, pp. 379–388, 1995. DOI: 10.1098/rspa.1995.0022.
  • R. Quintanilla and R. Racke, “A note on stability in three-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 51, no. 1–2, pp. 24–29, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.045.
  • R. Quintanilla, “A well-posed problem for the three-dual-phase-lag heat conduction,” J. Therm. Stresses, vol. 32, no. 12, pp. 1270–1278, 2009. DOI: 10.1080/01495730903310599.
  • S. Chiriţă, C. D’Apice and V. Zampoli, “The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence,” Int. J. Heat Mass Transfer, vol. 102, pp. 226–232, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.019.
  • C. D’Apice, S. Chiriţă and V. Zampoli, “On the well-posedness of the time differential three-phase-lag thermoelasticity model,” Arch. Mech., vol. 68, no. 5, pp. 371–393, 2016.
  • V. Zampoli and A. Landi, “A domain of influence result about the time differential three-phase-lag thermoelastic model,” J. Therm. Stresses, vol. 40, no. 1, pp. 108–120, 2017. DOI: 10.1080/01495739.2016.1195242.
  • C. D’Apice and V. Zampoli, “Advances on the time differential three-phase-lag heat conduction model and major open issues,” in AIP Conference Proceedings, vol. 1863, Art. 560056, 2017. DOI: 10.1063/1.4992739.
  • M. Carini and V. Zampoli, “On porous matrices with three delay times: A study in linear thermoelasticity,” Mathematics, vol. 8, no. 3, p. 371, 2020. DOI: 10.3390/math8030371.
  • S. Chiriţă, M. Ciarletta and V. Tibullo, “On the thermomechanic consistency of the time differential dual-phase-lag models of heat conduction,” Int. J. Heat Mass Transfer, vol. 114, pp. 277–285, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.071.
  • S. Biswas, B. Mukhopadhyay and S. Shaw, “Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model,” J. Therm. Stresses, vol. 40, no. 4, pp. 403–419, 2017. DOI: 10.1080/01495739.2017.1283971.
  • S. Biswas, “Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium,” J. Therm. Stresses, vol. 41, no. 5, pp. 627–644, 2018. DOI: 10.1080/01495739.2018.1425940.
  • A. Kar and M. Kanoria, “Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect,” Appl. Math. Modell., vol. 33, no. 8, pp. 3287–3298, 2009. DOI: 10.1016/j.apm.2008.10.036.
  • S. Chiriţă, “High-order approximations of three-phase-lag heat conduction model: Some qualitative results,” J. Therm. Stresses, vol. 41, no. 5, pp. 608–626, 2018. DOI: 10.1080/01495739.2017.1397494.
  • L. Brun, “Méthodes énergétiques dans les systèmes évolutifs linéaires. Deuxième Partie: Théorèmes D’unicité,” J. Méc., vol. 8, pp. 167–192, 1969.
  • R. J. Knops and L. E. Payne, “On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity,” Int. J. Solids Struct., vol. 6, no. 8, pp. 1173–1184, 1970. DOI: 10.1016/0020-7683(70)90054-5.
  • R. J. Knops and E. W. Wilkes, “Theory of elastic stability,” in Handbuch Der Physik, vol. VI/a, C. Truesdell, Ed., Berlin: Springer, 1973, pp. 125–302.
  • R. J. Knops and R. Quintanilla, “Continuum mechanics - Introductory topics in the mathematical theory of continuum mechanics,” in Encyclopedia of Life Support Systems (UNESCO-EOLSS), vol. 3, J. Merodio and G. Saccomandi, Eds. 2015, pp. 118. https://www.eolss.net/ebooklib/bookinfo/continuum-mechanics.aspx.
  • R. B. Hetnarski, (ed.), Encyclopedia of Thermal Stresses. Dordrecht: Springer, 2014.
  • S. Rionero and S. Chiriţă, “The Lagrange identity method in linear thermoelasticity,” Int. J. Eng. Sci., vol. 25, no. 7, pp. 935–947, 1987. DOI: 10.1016/0020-7225(87)90126-1.
  • S. Chiriţă, “Some applications of the Lagrange identity in thermoelasticity with one relaxation time,” J. Therm. Stresses, vol. 11, no. 3, pp. 207–231, 1988. DOI: 10.1080/01495738808961933.
  • S. Chiriţă and M. Ciarletta, “Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua,” Eur. J. Mech. -A/Solids, vol. 18, no. 5, pp. 915–933, 1999. DOI: 10.1016/S0997-7538(99)00121-7.
  • S. Kothari and S. Mukhopadhyay, “Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium,” J. Therm. Stresses, vol. 36, no. 10, pp. 985–1000, 2013. DOI: 10.1080/01495739.2013.788896.
  • R. Quintanilla, “On uniqueness and stability for a thermoelastic theory,” Math. Mech. Solids, vol. 22, no. 6, pp. 1387–1396, 2017. DOI: 10.1177/1081286516634154.
  • M. Dreher, R. Quintanilla and R. Racke, “Ill–posed problems in thermomechanics,” Appl. Math. Lett., vol. 22, no. 9, pp. 1374–1379, 2009. DOI: 10.1016/j.aml.2009.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.