117
Views
2
CrossRef citations to date
0
Altmetric
Articles

Axisymmetric half-space problem in thermoelastic diffusion under phase lags and hyperbolic two temperature

, &
Pages 535-551 | Received 02 Nov 2021, Accepted 27 Feb 2023, Published online: 05 Apr 2023

References

  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solid., vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • R. B. Hetnarski and J. Ignaczak, “Soliton-like waves in a low temperature nonlinear thermoelastic solid,” Int. J. Eng. Sci., vol. 34, no. 15, pp. 1767–1787, 1996. DOI: 10.1016/S0020-7225(96)00046-8.
  • R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Therm. Stress., vol. 22, no. 4–5, pp. 451–476, 1999.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. Roy. Soc. London. A Math. Phys. Sci., vol. 432, no. 1885, pp. 171–194, 1991.
  • A. Green and P. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress., vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. Green and P. Naghdi, “Thermoelasticity without energy dissipation,” J Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. Y. Tzou, “A unified field approach for heat conduction from macro-to micro-scales,” J. Heat Transf., vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • D. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • I. A. Abbas and A. M. Zenkour, “The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using green-naghdi theory,” J. Comp. Theo. Nano., vol. 11, no. 2, pp. 331–338, 2014. DOI: 10.1166/jctn.2014.3356.
  • I. A. Abbas, “Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method,” Arch. Appl. Mech., vol. 79, no. 1, pp. 41–50, 2009. DOI: 10.1007/s00419-008-0206-9.
  • F. Alzahrani, A. Hobiny, I. Abbas and M. Marin, “An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities,” Symmetry., vol. 12, no. 5, pp. 848, 2020. DOI: 10.3390/sym12050848.
  • I. A. Abbas, “A gn model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole,” Appl. Math. Lett., vol. 26, no. 2, pp. 232–239, 2013. DOI: 10.1016/j.aml.2012.09.001.
  • I. A. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity,” Appl. Math. Model., vol. 39, no. 20, pp. 6196–6206, 2015. DOI: 10.1016/j.apm.2015.01.065.
  • I. A. Abbas, A.-E.-N. N. Abdalla, F. S. Alzahrani and M. Spagnuolo, “Wave propagation in a generalized thermoelastic plate using eigenvalue approach,” J. Therm. Stress., vol. 39, no. 11, pp. 1367–1377, 2016. DOI: 10.1080/01495739.2016.1218229.
  • S. R. Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stress., vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • A. Kar and M. Kanoria, “Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect,” Eur. J. Mech.-A/Solid., vol. 28, no. 4, pp. 757–767, 2009. DOI: 10.1016/j.euromechsol.2009.01.003.
  • M. Kanoria and S. H. Mallik, “Generalized thermoviscoelastic interaction due to periodically varying heat source with three-phase-lag effect,” Eur. J. Mech.-A/Solid., vol. 29, no. 4, pp. 695–703, 2010. DOI: 10.1016/j.euromechsol.2010.02.005.
  • A. S. El-Karamany and M. A. Ezzat, “On the three-phase-lag linear micropolar thermoelasticity theory,” Eur. J. Mech.-A/Solid., vol. 40, pp. 198–208, 2013. DOI: 10.1016/j.euromechsol.2013.01.011.
  • M. E. Gurtin and W. O. Williams, “On the clausius-duhem inequality,” J. Appl. Math. Phys. (ZAMP)., vol. 17, no. 5, pp. 626–633, 1966. DOI: 10.1007/BF01597243.
  • M. E. Gurtin and W. O. Williams, “An axiomatic foundation for continuum thermodynamics,” Arch. Rational Mech. Anal., vol. 26, no. 2, pp. 83–117, 1967. DOI: 10.1007/BF00285676.
  • P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures,” J. Appl. Math. Phys. (ZAMP)., vol. 19, no. 4, pp. 614–627, 1968. DOI: 10.1007/BF01594969.
  • P. J. Chen, M. E. Gurtin and W. O. Williams, “On the thermodynamics of non-simple elastic materials with two temperatures,” J. Appl. Math. Phys. (ZAMP)., vol. 20, no. 1, pp. 107–112, 1969. DOI: 10.1007/BF01591120.
  • W. Warren and P. Chen, “Wave propagation in the two temperature theory of thermoelasticity,” Acta Mech., vol. 16, no. 1-2, pp. 21–33, 1973. DOI: 10.1007/BF01177123.
  • H. Youssef, “Theory of two-temperature-generalized thermoelasticity,” IMA J. Appl. Math., vol. 71, no. 3, pp. 383–390, 2006. DOI: 10.1093/imamat/hxh101.
  • A. Bajpai, R. Kumar and P. K. Sharma, “Analysis of wave motion and deformation in elastic plate based on two temperature theory of thermoelasticity,” Wave Random Complex Media, 2021. DOI: 10.1080/17455030.2021.1887545.
  • H. M. Youssef and A. A. El-Bary, “Theory of hyperbolic two-temperature generalized thermoelasticity,” Mater. Phys. Mech., vol. 40, no. 2, pp. 158–171, 2018.
  • I. Abbas, T. Saeed and M. Alhothuali, “Hyperbolic two-temperature photo-thermal interaction in a semiconductor medium with a cylindrical cavity,” Silicon., vol. 13, no. 6, pp. 1871–1878, 2021. DOI: 10.1007/s12633-020-00570-7.
  • W. Nowacki, “Dynamical problems of thermo diffusion in solids I,” Bullet. Polish Acad. Sci. Technol., vol. 22, pp. 55–64, 1974.
  • W. Nowacki, “Dynamical problems of thermo diffusion in solids II,” Bullet. Polish Acad. Sci. Technol., vol. 22, pp. 129–135, 1974.
  • W. Nowacki, “Dynamical problems of thermo diffusion in solids III,” Bullet. Polish Acad. Sci. Technol., vol. 22, pp. 257–266, 1974.
  • H. H. Sherief, F. A. Hamza and H. A. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci., vol. 42, no. 5-6, pp. 591–608, 2004. DOI: 10.1016/j.ijengsci.2003.05.001.
  • A. Bajpai and P. Sharma, “Variable thermal conductivity and diffusivity impact on forced vibrations of thermodiffusive elastic plate,” J. Therm. Stress., vol. 44, no. 9, pp. 1169–1190, 2021. DOI: 10.1080/01495739.2021.1955640.
  • A. Bajpai, P. Sharma and R. Kumar, “Transient response of a thermo-diffusive elastic thick circular plate with variable conductivity and diffusivity,” Acta Mech, vol. 232, no. 9, pp. 3343–3361, 2021. DOI: 10.1007/s00707-021-03017-1.
  • Y. Z. Povstenko, “Fractional heat conduction equation and associated thermal stress,” J. Therm. Stress., vol. 28, no. 1, pp. 83–102, 2004. DOI: 10.1080/014957390523741.
  • H. H. Sherief, A. M. A. El-Sayed and A. M. Abd El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solid. Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • H. M. Youssef, “Theory of fractional order generalized thermoelasticity,” J. Heat Transf., vol. 132, no. 6, pp. 061301, 2010. DOI: 10.1115/1.4000705.
  • M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Phys. B Condens. Matter, vol. 406, no. 1, pp. 30–35, 2011. DOI: 10.1016/j.physb.2010.10.005.
  • M. A. Ezzat, “Thermoelectric mhd non-newtonian fluid with fractional derivative heat transfer,” Phys. B Condens. Matter., vol. 405, no. 19, pp. 4188–4194, 2010. DOI: 10.1016/j.physb.2010.07.009.
  • G. Jumarie, “Derivation and solutions of some fractional black–scholes equations in coarse-grained space and time. application to merton’s optimal portfolio,” Comput. Math. Appl., vol. 59, no. 3, pp. 1142–1164, 2010. DOI: 10.1016/j.camwa.2009.05.015.
  • A. S. El-Karamany and M. A. Ezzat, “Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity,” J. Therm. Stress., vol. 34, no. 3, pp. 264–284, 2011. DOI: 10.1080/01495739.2010.545741.
  • M. A. Ezzat and M. A. Fayik, “Fractional order theory of thermoelastic diffusion,” J. Therm. Stress., vol. 34, no. 8, pp. 851–872, 2011. DOI: 10.1080/01495739.2011.586274.
  • M. A. Ezzat, A. S. El Karamany and M. A. Fayik, “Fractional order theory in thermoelastic solid with three-phase lag heat transfer,” Arch Appl Mech, vol. 82, no. 4, pp. 557–572, 2012. DOI: 10.1007/s00419-011-0572-6.
  • E. M. Hussein, “Effect of fractional parameter on thermoelastic half-space subjected to a moving heat source,” Int. J. Heat Mass Transf., vol. 141, pp. 855–860, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.094.
  • E. M. Hussein, “New fractional model for 2 dimensional half space problem with in the theory of generalized thermoelastic diffusion,” ZAMM-J. Appl. Math. Mech./Zeitschrift Angew. Math. Mech., vol. 102, no. 1, pp. e202100231, 2022.
  • E. M. Hussein, “New fractional application on a homogenous isotropic thermo-poroelastic half-space,” Mech. Solids, vol. 57, no. 4, pp. 921–936, 2022. DOI: 10.3103/S0025654422040094.
  • E. M. Hussein, “New fractional order model of thermoporoelastic theory for a half space saturated with fluid,” Mech. Solids, vol. 56, no. 5, pp. 838–855, 2021. DOI: 10.3103/S0025654421050113.
  • H. H. Sherief and E. M. Hussein, “New fractional order model of thermoporoelastic theory for a porous infinitely long cylinder saturated with fluid,” Wave Random Complex Media, 2021. DOI: 10.1080/17455030.2021.1998731.
  • H. H. Sherief and E. M. Hussein, “The effect of fractional thermoelasticity on two-dimensional problems in spherical regions under axisymmetric distributions,” J. Therm. Stress., vol. 43, no. 4, pp. 440–455, 2020. DOI: 10.1080/01495739.2020.1724219.
  • P. Lata and S. Singh, “Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer,” GEM-Int. J. Geomathemat., vol. 13, no. 1, pp. 1–17, 2022.
  • I. Kaur, P. Lata and K. Singh, “Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature,” Wave Random Complex Media., vol. 32, no. 5, pp. 2499–2532, 2020. DOI: 10.1080/17455030.2020.1856451.
  • M. A. Ezzat and A. A. Bary, “State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity,” Int. J. Eng. Sci., vol. 47, no. 4, pp. 618–630, 2009. DOI: 10.1016/j.ijengsci.2008.12.012.
  • M. Ezzat, A. El-Bary and S. Ezzat, “Combined heat and mass transfer for unsteady mhd flow of perfect conducting micropolar fluid with thermal relaxation,” Energy Convers. Manage., vol. 52, no. 2, pp. 934–945, 2011. DOI: 10.1016/j.enconman.2010.08.021.
  • M. A. Ezzat, A. S. El-Karamany and A. El-Bary, “Thermoelectric viscoelastic materials with memory-dependent derivative,” Smart Struct. Syst., vol. 19, no. 5, pp. 539–551, 2017. DOI: 10.12989/sss.2017.19.5.539.
  • M. Ezzat and A. El-Bary, “Mhd free convection flow with fractional heat conduction law,” Magnetohydrodynam., vol. 48, no. 4, pp. 587–606, 2012. (0024-998X)
  • A. Mahdy, K. Lotfy, E. Ismail, A. El-Bary, M. Ahmed and A. El-Dahdouh, “Analytical solutions of time-fractional heat order for a magneto-photothermal semiconductor medium with thomson effects and initial stress,” Result. Phys., vol. 18, pp. 103174, 2020. DOI: 10.1016/j.rinp.2020.103174.
  • I. Kaur, P. Lata and K. Singh, “Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature,” Partial Differen. Equation Appl. Math., vol. 4, pp. 100049, 2021. DOI: 10.1016/j.padiff.2021.100049.
  • A. Sur and M. Kanoria, “Three-phase-lag elasto-thermodiffusive response in an elastic solid under hydrostatic pressure,” Int. J. Appl. Math. Mech., vol. 3, no. 2, pp. 121–137, 2015.
  • A. Bajpai, P. Sharma and R. Kumar, “Modeling of thermoelastic diffusion plate under two temperature, fractional-order, and temperature-dependent material properties,” ZAMM-J. Appl. Math. Mech./Zeitschrift Angew. Math. Mech., vol. 101, no. 10, pp. e202000321, 2021.
  • S. Deswal, K. K. Kalkal and S. S. Sheoran, “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction,” Phys. B Condens. Matter., vol. 496, pp. 57–68, 2016. DOI: 10.1016/j.physb.2016.05.008.
  • J. Tripathi, G. Kedar and K. Deshmukh, “Two-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions,” Acta Mech., vol. 226, no. 10, pp. 3263–3274, 2015. DOI: 10.1007/s00707-015-1383-6.
  • G. Honig and U. Hirdes, “A method for the numerical inversion of laplace transforms,” J. Comput. Appl. Math., vol. 10, no. 1, pp. 113–132, 1984. DOI: 10.1016/0377-0427(84)90075-X.
  • D. Mashat, A. Zenkour and A. Abouelregal, “Fractional order thermoelasticity theory for a half-space subjected to an axisymmetric heat distribution,” Mech. Adv. Mater. Struct., vol. 22, no. 11, pp. 925–932, 2015. DOI: 10.1080/15376494.2014.882461.
  • W. H. Press, W. T. Vetterling, S. A. Teukolsky and B. P. Flannery, Numerical Recipes Example Book (FORTRAN). Cambridge: Cambridge University Press, 1992.
  • R. Kumar, S. Devi and V. Sharma, “Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags,” Mech. Mech. Eng., vol. 23, no. 1, pp. 36–49, 2019. DOI: 10.2478/mme-2019-0006.
  • A. A. El-Bary, H. M. Youssef and M. A. E. Nasr, “Hyperbolic two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to the non-gaussian laser beam,” J. Umm Al-Qura Univ. Eng. Arch., vol. 13, pp. 1–8, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.