43
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fundamental solution in a swelling porous medium containing a mixture of solid, liquid, and gas

& ORCID Icon
Pages 935-948 | Received 30 Jan 2023, Accepted 20 May 2023, Published online: 17 Jul 2023

References

  • C. Truesdell and R. Toupin, “The classical field theories,” in Handbuch Der Physik, vol. III/3, Flugge, Ed. Berlin: Springer, 1960.
  • P. Kelly, “A reacting continuum,” Int. J. Eng. Sci., vol. 2, no. 2, pp. 129–153, 1964. DOI: 10.1016/0020-7225(64)90001-1.
  • A. C. Eringen and J. D. Ingram, “A continuum theory of chemically reacting media-I,” Int. J. Eng. Sci., vol. 3, no. 2, pp. 197–212, 1965. DOI: 10.1016/0020-7225(65)90044-3.
  • J. D. Ingram and A. C. Eringen, “A continuum theory of chemically reacting media-II constitutive equations of reacting fluid mixtures,” Int. J. Engineering Science, vol. 5, no. 4, pp. 289–322, 1967. DOI: 10.1016/0020-7225(67)90040-7.
  • A. C. Eringen, “A continuum theory of swelling porous elastic soils,” Int. J. Eng. Sci., vol. 32, no. 8, pp. 1337–1349, 1994. DOI: 10.1016/0020-7225(94)90042-6.
  • F. Bofill and R. Quintanilla, “Anti plane shear deformations of swelling porous elastic soils,” Int. J. Eng. Sci., vol. 41, no. 8, pp. 801–816, 2003. DOI: 10.1016/S0020-7225(02)00281-1.
  • M. Svanadze, V. Tibullo, and V. Zampoli, “Fundamental solution in the theory of micropolar thermoelasticity without energy dissipation,” J. Therm. Stresses, vol. 29, no. 1, pp. 57–66, 2006. DOI: 10.1080/01495730500257417.
  • M. Svanadze, P. Giordano and V. Tibullo, “Basic properties of the fundamental solution in the theory of micropolar thermoelasticity without energy dissipation,” J. Therm. Stresses, vol. 33, no. 8, pp. 721–753, 2010. DOI: 10.1080/01495739.2010.482348.
  • R. Kumar and T. Kansal, “Plane waves and fundamental solution in the generalized theories of thermoelastic diffusion,” Int. J. Appl. Math. Mech., vol. 8, no. 4, pp. 1–20, 2012.
  • K. Sharma and P. Kumar, “Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,” J. Therm. Stresses, vol. 36, no. 2, pp. 94–111, 2013. DOI: 10.1080/01495739.2012.720545.
  • S. Sharma, K. Sharma, and R. R. Bargava, “Wave motion and representation of fundamental solution in electro-micro stretch viscoelastic solids,” Mater. Phys. Mech., vol. 17, pp. 93–110, 2013.
  • S. Sharma, K. Sharma, and R. R. Bahargava, “Plane waves and fundamental solution in an electro-microstretch elastic solids,” Afr. Math, vol. 25, no. 2, pp. 483–497, 2014. DOI: 10.1007/s13370-013-0161-7.
  • R. Kumar, D. Taneja, and K. Kumar, “Fundamental and plane wave solution in swelling porous medium,” Afr. Math., vol. 25, no. 2, pp. 397–410, 2014. DOI: 10.1007/s13370-012-0123-5.
  • E. Scarpetta, M. Svanadze, and V. Zampoli, “Fundamental solutions in the theory of thermoelasticity for solids with double porosity,” J. Therm. Stresses, vol. 37, no. 6, pp. 727–748, 2014. DOI: 10.1080/01495739.2014.885337.
  • R. Kumar, R. Vohra, and M. G. Gorla, “Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity,” Arch. Mech., vol. 68, no. 4, pp. 263–284, 2016.
  • M. Svanadze, “Potential method in the theory of thermoviscoelastic mixtures,” J. Therm. Stresses, vol. 41, no. 8, pp. 1022–1041, 2018. DOI: 10.1080/01495739.2018.1446203.
  • S. Biswas, “Fundamental solution of steady oscillations in thermoelastic medium with voids,” Waves Random Complex Media, vol. 30, no. 4, pp. 759–775, 2020. DOI: 10.1080/17455030.2018.1557759.
  • R. Kumar, S. Kumar, and M. G. Gourla, “Plane wave and fundamental solution in thermoporoelastic medium,” Mater. Phys. Mech., vol. 35, pp. 101–114, 2018.
  • M. Svanadze, “On the linear theory of double porosity thermoelasticity under local thermal non-equilibrium,” J. Therm. Stresses, vol. 42, no. 7, pp. 890–913, 2019. DOI: 10.1080/01495739.2019.1571973.
  • S. Biswas, “Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity,” Mech. Based Des. Struct. Mach., vol. 47, no. 4, pp. 430–452, 2019. DOI: 10.1080/15397734.2018.1557528.
  • M. Svanadze, “Fundamental solutions in the linear theory of thermoelasticity for solids with triple porosity,” Math. Mech. Solids, vol. 24, no. 4, pp. 919–938, 2019. DOI: 10.1177/1081286518761183.
  • M. Svanadze, “Potential method in the theory of thermoelasticity for materials with triple voids,” Arch. Mech., vol. 71, no. 2, pp. 113–136, 2019.
  • M. L. Scutaru, S. Vlase, M. Marin, and A. Modrea, “New analytical method based on dynamic response of planar mechanical elastic systems,” Bound Value Probl., vol. 2020, no. 1, Art. No. 104, 2020. DOI: 10.1186/s13661-020-01401-9.
  • F. Alzahrani, A. Hobiny, I. Abbas and M. Marin, “An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities,” Symmetry, vol. 12, no. 5, pp. 848, Art. No., 848, 2020. DOI: 10.3390/sym12050848.
  • Hormander, Linear Partial Differential Operators. Berlin: Springer-Verlag, 1964.
  • S. K. Tomar and S. Goyal, “Elastic waves in swelling porous media,” Transp. Porous Med., vol. 100, no. 1, pp. 39–68, 2013. DOI: 10.1007/s11242-013-0204-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.