111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal and diffusion induced stresses of layered electrodes in the lithium-ion battery under galvanostatic charging

, , &
Pages 1313-1328 | Received 16 Jun 2021, Accepted 08 Oct 2023, Published online: 01 Nov 2023

References

  • J. Liu et al., “Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid,” Adv. Funct. Mater., vol. 23, no. 8, pp. 929–946, 2013. DOI: 10.1002/adfm.201200690.
  • C. Capasso and O. Veneri, “Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles,” Appl. Energy, vol. 136, pp. 921–930, 2014. DOI: 10.1016/j.apenergy.2014.04.013.
  • S. Bourlot, P. Blanchard and S. Robert, “Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles,” J. Power Sources, vol. 196, no. 16, pp. 6841–6846, 2011. DOI: 10.1016/j.jpowsour.2010.09.103.
  • K. M. Kim, Y. S. Jeong and I. C. Bang, “Thermal analysis of lithium-ion battery-equipped smartphone explosions,” Eng. Sci. Technol., vol. 22, no. 2, pp. 610–617, 2019. DOI: 10.1016/j.jestch.2018.12.008.
  • Z. J. An et al., “Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model,” Appl. Therm. Eng., vol. 137, pp. 792–807, 2018. DOI: 10.1016/j.applthermaleng.2018.04.014.
  • J. W. Li and H. Y. Zhang, “Thermal characteristics of power battery module with composite phase change material and external liquid cooling,” Int. J. Heat Mass Tran., vol. 156, pp. 119820, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119820.
  • D. Zhang et al., “Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review,” Energy Rep., vol. 8, pp. 4525–4534, 2022. DOI: 10.1016/j.egyr.2022.03.130.
  • S. G. Yao et al., “Electrochemical mechanism in porous electrode of zinc–nickel single-flow battery based on lattice Boltzmann method,” Int. J. Heat Mass Tran., vol. 138, pp. 903–915, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.033.
  • N. Iqbal, I. U. Haq and S. Lee, “Chemo-mechanical model predicted critical SOCs for the mechanical stability of electrode materials in lithium-ion batteries,” Int. J. Mech. Sci., vol. 216, pp. 107034, 2022. DOI: 10.1016/j.ijmecsci.2021.107034.
  • Z. Y. Jiang et al., “Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions,” Int. J. Hydrog. Energ., vol. 47, no. 15, pp. 9428–9459, 2022. DOI: 10.1016/j.ijhydene.2022.01.008.
  • H. Bockholt et al., “The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties,” J. Power Sources, vol. 325, pp. 140–151, 2016. DOI: 10.1016/j.jpowsour.2016.05.127.
  • B. Wu and W. Lu, “A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction,” J. Power Sources, vol. 360, pp. 360–372, 2017. DOI: 10.1016/j.jpowsour.2017.05.115.
  • A. B. Zhang et al., “Fracture analysis of bi-layer electrode in lithium-ion battery caused by diffusion-induced stress,” Eng. Fract. Mech., vol. 235, pp. 107189, 2020. DOI: 10.1016/j.engfracmech.2020.107189.
  • Y. Q. Lai et al., “Insight into heat generation of lithium-ion batteries based on the electrochemical-thermal model at high discharge rates,” Int. J. Hydrog. Energy, vol. 40, no. 38, pp. 13039–13049, 2015. DOI: 10.1016/j.ijhydene.2015.07.079.
  • W. J. Jiang et al., “A thermal-electrochemical-mechanical coupled model based on non-equilibrium thermodynamics of Li-ion batteries,” J. Energy Storage, vol. 55, pp. 105655, 2022. DOI: 10.1016/j.est.2022.105655.
  • J. Y. Lin et al., “A review on recent progress, challenges and perspective of battery thermal management system,” Int. J. Heat Mass Tran., vol. 167, pp. 120834, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120834.
  • Z. J. An et al., “Numerical modeling and analysis of thermal behavior and Li+ transport characteristic in lithium-ion battery,” Int. J. Heat Mass Tran., vol. 127, pp. 1351–1366, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.147.
  • W. X. Mei et al., “Numerical study on thermal characteristics comparison between charge and discharge process for lithium ion battery,” Int. J. Heat Mass Tran., vol. 162, pp. 120319, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120319.
  • P. Z. Lyu et al., “Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage,” Appl. Therm. Eng., vol. 166, pp. 114749, 2020. DOI: 10.1016/j.applthermaleng.2019.114749.
  • A. K. Thakur et al., “A state-of-the art review on advancing battery thermal management systems for fast-charging,” Appl. Therm. Eng., vol. 226, pp. 120303, 2023. DOI: 10.1016/j.applthermaleng.2023.120303.
  • S. Ma et al., “Temperature effect and thermal impact in lithium-ion batteries: a review,” Prog. Nat. Sci., vol. 28, no. 6, pp. 653–666, 2018. DOI: 10.1016/j.pnsc.2018.11.002.
  • C. Hendricks et al., “A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries,” J. Power Sources, vol. 297, pp. 113–120, 2015. DOI: 10.1016/j.jpowsour.2015.07.100.
  • S. C. Yang et al., “A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries,” Electrochim. Acta, vol. 326, pp. 134928, 2019. DOI: 10.1016/j.electacta.2019.134928.
  • A. B. Zhang et al., “A Griffith crack model in a generalized nonhomogeneous interlayer of bonded dissimilar half-planes,” J. Theort. Appl. Mech., vol. 61, no. 2, pp. 495–497, 1994. DOI: 10.15632/jtam-pl/166562.
  • O. Valentin et al., “Modeling of thermo-mechanical stresses in Li-ion battery,” J. Energy Storage, vol. 13, pp. 184–192, 2017. DOI: 10.1016/j.est.2017.07.018.
  • W. X. Mei et al., “An investigation on expansion behavior of lithium-ion battery based on the thermal-mechanical coupling model,” J. Clean Prod., vol. 274, pp. 122643, 2020. DOI: 10.1016/j.jclepro.2020.122643.
  • D. Carlstedt and L. Asp, “Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling,” Compos. Sci. Technol., vol. 179, pp. 69–78, 2019. DOI: 10.1016/j.compscitech.2019.04.024.
  • D. Y. Liu, W. Q. Chen and X. D. Shen, “Diffusion induced stresses in graphene-based composite bilayer electrode of lithium-ion battery,” Compos. Struct., vol. 165, pp. 91–98, 2017. DOI: 10.1016/j.compstruct.2017.01.011.
  • J. Xu, G. Lindbergh and J. Varna, “Carbon fiber composites with battery function: stresses and dimensional changes due to Li-ion diffusion,” J. Compos Mater., vol. 52, no. 20, pp. 2729–2742, 2018. DOI: 10.1177/0021998317752825.
  • W. Ai et al., “Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells,” J. Electrochem. Soc., vol. 167, no. 1, pp. 013512, 2020. DOI: 10.1149/2.0122001JES.
  • P. F. Luo et al., “Coupled electrochemical-thermal-mechanical modeling and simulation of lithium-ion batteries,” J. Electrochem. Soc., vol. 169, no. 10, pp. 100535, 2022. DOI: 10.1149/1945-7111/ac9a04.
  • X. Zhang et al., “Numerical investigation on the elastoplastic behavior and fatigue life of the current collector of lithium-ion batteries based on the electrochemical-thermal-mechanical coupling model,” J. Energy Storage, vol. 68, pp. 107792, 2023. DOI: 10.1016/j.est.2023.107792.
  • N. Nitta et al., “Li-ion battery materials: present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015. DOI: 10.1016/j.mattod.2014.10.040.
  • S. L. Du et al., “An investigation of irreversible heat generation in lithium-ion batteries based on a thermo-electrochemical coupling method,” Appl. Therm. Eng., vol. 121, pp. 501–510, 2017. DOI: 10.1016/j.applthermaleng.2017.04.077.
  • D. Bernardi, E. M. Pawlikowski and J. Newman, “A general energy balance for battery systems,” J. Electrochem. Soc., vol. 132, no. 1, pp. 5–12, 1985. DOI: 10.1149/1.2113792.
  • J. Crank, The Mathematics of Diffusion. New York: oxford University Press, 1979,
  • J. Q. Zhang et al., “Diffusion induced stress in layered Li-ion battery electrode plates,” J. Power Sources, vol. 209, pp. 220–227, 2012. DOI: 10.1016/j.jpowsour.2012.02.104.
  • A. Swiderska-Mocek et al., “Temperature coefficients of Li-ion battery single electrode potentials and related entropy changes – revisited,” Phys. Chem. Chem. Phys., vol. 21, no. 4, pp. 2115–2120, 2019. DOI: 10.1039/C8CP06638H.
  • R. D. Deshpande and D. M. Bernardi, “Modeling solid-electrolyte interphase (SEI) fracture: coupled mechanical/chemical degradation of the lithium ion battery,” J. Electrochem. Soc., vol. 164, no. 2, pp. A461–A474, 2017. DOI: 10.1149/2.0841702jes.
  • R. Martínez-Cuenca et al., “Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe,” Appl. Therm. Eng., vol. 98, pp. 841–849, 2016. DOI: 10.1016/j.applthermaleng.2015.11.050.
  • X. J. Zhu et al., “Experimental study on the heat and mass transfer characteristics of air-water two-phase flow in an evaporative condenser with a horizontal elliptical tube bundle,” Appl. Therm. Eng., vol. 168, pp. 114825, 2020. DOI: 10.1016/j.applthermaleng.2019.114825.
  • Q. Wang et al., “A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles,” Renew. Sust. Energ. Rev., vol. 64, pp. 106–128, 2016. DOI: 10.1016/j.rser.2016.05.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.