81
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical-conical shell

&
Pages 35-58 | Received 22 Mar 2023, Accepted 06 Oct 2023, Published online: 01 Nov 2023

References

  • M. J. Babaei, A. A. Jafari and F. Ramezani, “Free vibrational behavior of functionally graded carbon nanotube composite fluid-filled cylindrical-conical shell: analytical and experimental investigation,” Mech. Based Design Struct. Mach., pp. 1–28, 2022. DOI: 10.1080/15397734.2022.2130357.
  • M. Caresta and N. J. Kessissoglou, “Free vibrational characteristics of isotropic coupled cylindrical–conical shells,” J. Sound Vibration, vol. 329, no. 6, pp. 733–751, 2010. DOI: 10.1016/j.jsv.2009.10.003.
  • E. Efraim and M. Eisenberger, “Exact vibration frequencies of segmented axisymmetric shells,” Thin-Walled Struct., vol. 44, no. 3, pp. 281–289, 2006. DOI: 10.1016/j.tws.2006.03.006.
  • M. Jafari Niasar et al., “Vibration analysis of a porous hollow conical rotor with circumferentially distributed piezoceramic strips,” Mech. Based Design Struct. Mach., pp. 1–20, 2022. DOI: 10.1080/15397734.2022.2150638.
  • S. Wu, Y. Qu and H. Hua, “Vibration characteristics of a spherical–cylindrical–spherical shell by a domain decomposition method,” Mech. Res. Commun., vol. 49, pp. 17–26, 2013. DOI: 10.1016/j.mechrescom.2013.01.002.
  • A. H. Sofiyev, “Thermal buckling of FGM shells resting on a two-parameter elastic foundation,” Thin-Walled Struct., vol. 49, no. 10, pp. 1304–1311, 2011. DOI: 10.1016/j.tws.2011.03.018.
  • M. R. Eslami, “Buckling of circular cylindrical shells,” in Buckling and Postbuckling of Beams, Plates, and Shells, M.R. Eslami, Ed., Cham, Switzerland: Springer International Publishing, 2018, pp. 381–463.
  • M. R. Eslami, “Buckling of conical shells,” in Buckling and Postbuckling of Beams, Plates, and Shells, M.R. Eslami, Ed., Cham, Switzerland: Springer International Publishing, 2018, pp. 539–588.
  • R. K. Bhangale, N. Ganesan and C. Padmanabhan, “Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells,” J. Sound Vibration, vol. 292, no. 1–2, pp. 341–371, 2006. DOI: 10.1016/j.jsv.2005.07.039.
  • B. Sahoo et al., “Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings,” Eng. Comput., vol. 39, no. 2, pp. 1267–1283, 2023. DOI: 10.1007/s00366-021-01514-4.
  • C. Tao and T. Dai, “Postbuckling of multilayer cylindrical and spherical shell panels reinforced with graphene platelet by isogeometric analysis,” Eng. Comput., vol. 38, no. S3, pp. 1885–1900, 2022. DOI: 10.1007/s00366-021-01360-4.
  • A. Parhi, B. N. Singh and S. K. Panda, “Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment,” Eng. Comput., vol. 37, no. 2, pp. 1565–1577, 2021. DOI: 10.1007/s00366-019-00903-0.
  • H. Aris and H. Ahmadi, “Combination resonance analysis of imperfect functionally graded conical shell resting on nonlinear viscoelastic foundation in thermal environment under multi-excitation,” J. Vibration Control, vol. 28, no. 15–16, pp. 2121–2144, 2022. DOI: 10.1177/10775463211006527.
  • S. Trabelsi, S. Zghal and F. Dammak, “A finite element procedure for thermal buckling analysis of functionally graded shell structures,” in Design and Modeling of Mechanical Systems - IV. Cham, Switzerland: Springer International Publishing, 2020.
  • X. Shi et al., “Vibration analysis of combined functionally graded cylindrical-conical shells coupled with annular plates in thermal environment,” Compos. Struct., vol. 294, pp. 115738, 2022. DOI: 10.1016/j.compstruct.2022.115738.
  • Z. Chen et al., “Investigation on vibration of the functionally graded material–stepped cylindrical shell coupled with annular plate in thermal environment,” J. Low Frequency Noise, Vibration Active Control., vol. 41, no. 1, pp. 85–111, 2022. DOI: 10.1177/14613484211039318.
  • C. An et al., “Transient analysis of multilayer composite pipelines with active heating,” in Structural and Thermal Analyses of Deepwater Pipes, C. An Ed., Cham, Switzerland: Springer International Publishing, 2021, pp. 205–220.
  • A. Hajlaoui, E. Chebbi and F. Dammak, “Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element,” Int. J. Pressure Vessels Piping, vol. 194, pp. 104547, 2021. DOI: 10.1016/j.ijpvp.2021.104547.
  • Y. X. Hao et al., “Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation,” J. Sound Vibration, vol. 495, pp. 115904, 2021. DOI: 10.1016/j.jsv.2020.115904.
  • S. A. Bоchkarev and S. V. Lekomtsev, “Stability of functionally graded circular cylindrical shells under combined loading,” Mech. Compos. Mater., vol. 55, no. 3, pp. 349–362, 2019. DOI: 10.1007/s11029-019-09817-w.
  • M. Shakouri, “Free vibration analysis of functionally graded rotating conical shells in thermal environment,” Compos. B Eng., vol. 163, pp. 574–584, 2019. DOI: 10.1016/j.compositesb.2019.01.007.
  • S. W. Yang et al., “Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances,” Thin-Walled Struct., vol. 142, pp. 369–391, 2019. DOI: 10.1016/j.tws.2019.04.024.
  • S. Mahmoudkhani, H. Haddadpour and H. M. Navazi, “Supersonic flutter prediction of functionally graded conical shells,” Compos. Struct., vol. 92, no. 2, pp. 377–386, 2010. DOI: 10.1016/j.compstruct.2009.08.018.
  • T. Fu et al., “Dynamic instability analysis of porous FGM conical shells subjected to parametric excitation in thermal environment within FSDT,” Thin-Walled Struct., vol. 158, pp. 107202, 2021. DOI: 10.1016/j.tws.2020.107202.
  • S. Zghal et al., “Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element,” J. Therm. Stresses, vol. 44, no. 3, pp. 1–27, 2021. DOI: 10.1080/01495739.2021.1871577.
  • Ö. Civalek, “A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates,” Appl. Math. Modelling, vol. 33, no. 1, pp. 300–314, 2009. DOI: 10.1016/j.apm.2007.11.003.
  • H. Ersoy, K. Mercan and Ö. Civalek, “Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods,” Compos. Struct., vol. 183, pp. 7–20, 2018. DOI: 10.1016/j.compstruct.2016.11.051.
  • S. Dastjerdi, B. Akgöz and Ö. Civalek, “On the effect of viscoelasticity on behavior of gyroscopes,” Int. J. Eng. Sci., vol. 149, pp. 103236, 2020. DOI: 10.1016/j.ijengsci.2020.103236.
  • S. Dastjerdi et al., “On the non-linear dynamics of torus-shaped and cylindrical shell structures,” Int. J. Eng. Sci., vol. 156, pp. 103371, 2020. DOI: 10.1016/j.ijengsci.2020.103371.
  • A. H. Sofiyev, “Review of research on the vibration and buckling of the FGM conical shells,” Compos. Struct., vol. 211, pp. 301–317, 2019. DOI: 10.1016/j.compstruct.2018.12.047.
  • H. Karami et al., “The thermophysical properties and the stability of nanofluids containing carboxyl-functionalized graphene nano-platelets and multi-walled carbon nanotubes,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104302, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104302.
  • H. S. Shen, “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells,” Compos. B Eng., vol. 43, no. 3, pp. 1030–1038, 2012. DOI: 10.1016/j.compositesb.2011.10.004.
  • M. Mirzaei and Y. Kiani, “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells,” Aerospace Sci. Technol., vol. 47, pp. 42–53, 2015. DOI: 10.1016/j.ast.2015.09.011.
  • K. Behdinan et al., “Graphene and CNT impact on heat transfer response of nanocomposite cylinders,” Nanotechnol. Rev., vol. 9, no. 1, pp. 41–52, 2020. DOI: 10.1515/ntrev-2020-0004.
  • A. Alibeigloo, “Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load,” Compos. B Eng., vol. 87, pp. 214–226, 2016. DOI: 10.1016/j.compositesb.2015.09.060.
  • S. S. Patnaik and T. Roy, “Vibration and damping characteristics of CNTR viscoelastic skewed shell structures under the influence of hygrothermal conditions,” Eng. Comput., vol. 38, no. 4, pp. 3773–3792, 2022. DOI: 10.1007/s00366-021-01411-w.
  • S. S. Patnaik and T. Roy, “Vibration characteristics and damping properties of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures under hygrothermal conditions,” J. Vibration Control., vol. 27, no. 21–22, pp. 2494–2512, 2021. DOI: 10.1177/1077546320961718.
  • I. Pakravan et al., “Haar wavelet technique applied on the functionally graded carbon nanotube reinforced conical shells to study free vibration and buckling behaviors in thermal environments,” J. Vibration Control., vol. 28, no. 15–16, pp. 1863–1878, 2022. DOI: 10.1177/1077546321996931.
  • N. D. Duc et al., “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., vol. 115, pp. 300–310, 2017. DOI: 10.1016/j.tws.2017.02.016.
  • A. H. Soureshjani, R. Talebitooti and M. Talebitooti, “Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells,” Thin-Walled Struct., vol. 156, pp. 106960, 2020. DOI: 10.1016/j.tws.2020.106960.
  • A. Zippo, M. Barbieri and F. Pellicano, “Temperature gradient effect on dynamic properties of a polymeric circular cylindrical shell,” Compos. Struct., vol. 216, pp. 301–314, 2019. DOI: 10.1016/j.compstruct.2019.02.098.
  • L. Wang et al., “Thermal vibration of carbon nanostructures,” in Handbook of Mechanics of Materials, S. Schmauder, Ed. Singapore: Springer, 2019, pp. 421–481.
  • L. Wang and H. Hu, “Thermal vibration of single-walled carbon nanotubes with quantum effects. Proceedings of,” Proc. Math. Phys. Eng. Sci., vol. 470, no. 2168, pp. 20140087, 2014. DOI: 10.1098/rspa.2014.0087.
  • J. Li, F. Tang and M. Habibi, “Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure,” Eng. Comput., vol. 38, no. 2, pp. 1559–1580, 2022. DOI: 10.1007/s00366-020-01110-y.
  • H. Moayedi et al., “Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell,” Eng. Comput., vol. 37, no. 4, pp. 3359–3374, 2021. DOI: 10.1007/s00366-020-01002-1.
  • Y. Heydarpour et al., “Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme,” Compos. Struct., vol. 235, pp. 111707, 2020. DOI: 10.1016/j.compstruct.2019.111707.
  • S. A. Fazelzadeh et al., “Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets,” J. Therm. Stresses, vol. 42, no. 1, pp. 1–17, 2019. DOI: 10.1080/01495739.2018.1524733.
  • Ö. Civalek, S. Dastjerdi and B. Akgöz, “Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates,” Mech. Based Design Struct. Mach., vol. 50, no. 6, pp. 1914–1931, 2022. DOI: 10.1080/15397734.2020.1766494.
  • O. Civalek, “Free vibration analysis of composite conical shells using the discrete singular convolution algorithm,” Steel Compos. Struct., vol. 6, no. 4, pp. 353–366, 2006. DOI: 10.12989/scs.2006.6.4.353.
  • Ö. Civalek and M. Avcar, “Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method,” Eng. Comput., vol. 38, no. S1, pp. 489–521, 2022. DOI: 10.1007/s00366-020-01168-8.
  • E. Sobhani et al., “The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells,” Eng. Comput., vol. 38, no. S4, pp. 3125–3152, 2022. DOI: 10.1007/s00366-021-01453-0.
  • E. Sobhani et al., “Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells,” Aeros. Sci. Technol., vol. 120, pp. 107257, 2022. DOI: 10.1016/j.ast.2021.107257.
  • A. H. Sofiyev and N. Kuruoglu, “Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation,” Defence Technol., vol. 18, no. 2, pp. 205–218, 2022. DOI: 10.1016/j.dt.2020.12.007.
  • M. Avey, A. H. Sofiyev and N. Kuruoglu, “Influences of elastic foundations and thermal environments on the thermoelastic buckling of nanocomposite truncated conical shells,” Acta Mech., vol. 233, no. 2, pp. 685–700, 2022. DOI: 10.1007/s00707-021-03139-6.
  • M. Avey, N. Fantuzzi and A. H. Sofiyev, “Thermoelastic stability of CNT patterned conical shells under thermal loading in the framework of shear deformation theory,” Mech. Adv. Mater. Struct., vol. 30, no. 9, pp. 1828–1841, 2023. DOI: 10.1080/15376494.2022.2045653.
  • A. H. Sofiyev, “The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure,” Compos. Struct., vol. 89, no. 3, pp. 356–366, 2009. DOI: 10.1016/j.compstruct.2008.08.010.
  • A. H. Sofiyev, “On the vibration and stability behaviors of heterogeneous- CNTRC-truncated conical shells under axial load in the context of FSDT,” Thin-Walled Struct., vol. 151, pp. 106747, 2020. DOI: 10.1016/j.tws.2020.106747.
  • M. Avey, N. Fantuzzi and A. Sofiyev, “Mathematical modeling and analytical solution of thermoelastic stability problem of functionally graded nanocomposite cylinders within different theories,” Mathematics, vol. 10, no. 7, pp. 1081, 2022. DOI: 10.3390/math10071081.
  • Y. S. Song and J. R. Youn, “Modeling of effective elastic properties for polymer based carbon nanotube composites,” Polymer, vol. 47, no. 5, pp. 1741–1748, 2006. DOI: 10.1016/j.polymer.2006.01.013.
  • H. Bagheri, Y. Kiani and M. R. Eslami, “Free vibration of joined conical-conical shells,” Thin-Walled Struct., vol. 120, pp. 446–457, 2017. DOI: 10.1016/j.tws.2017.06.032.
  • C. Shu and H. Du, “A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates,” Int. J. Solids Struct., vol. 34, no. 7, pp. 837–846, 1997. DOI: 10.1016/S0020-7683(96)00056-X.
  • C. Shu, “Application of differential quadrature method to structural and vibration analysis,” in Differential Quadrature and Its Application in Engineering, C. Shu, Ed., London: Springer, 2000, pp. 186–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.