49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermohyperelastic constitutive response for semilinear materials with application to deformation of a rotating thin disk

, , , &
Pages 581-599 | Received 09 Dec 2022, Accepted 01 Mar 2024, Published online: 25 Mar 2024

References

  • R. Tiwari, R. Kumar, and A. E. Abouelregal, “Thermoelastic vibrations of nano-beam with varying axial load and ramp type heating under the purview of Moore–Gibson–Thompson generalized theory of thermoelasticity,” Appl. Phys. A, vol. 128. no. 2, pp. 160, 2022. DOI: 10.1007/s00339-022-05287-5.
  • P. Zhang and H. Qing, “Thermoelastic analysis of nanobar based on nonlocal integral elasticity and nonlocal integral heat conduction,” J. Therm. Stresses., vol. 44, no. 10, pp. 1244–1261, 2021. DOI: 10.1080/01495739.2021.1967240.
  • I. Kaur, P. Lata, and K. Singh, “Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam,” Struct. Eng. Mech., vol. 81, pp. 29–37, 2022.
  • I. Kaur, K. Singh, E. Craciun, and H. Altenbach, “Transversely isotropic visco-thermo-elastic nanobeam with time harmonic laser pulse and new modified three phase lag Green–Nagdhi model,” J. Appl. Math. Mech., vol. 102, no. 4, pp. e202100263, 2022. DOI: 10.1002/zamm.202100263.
  • M. A. Kouchakzadeh and A. Entezari, “Analytic solution of classical coupled thermoelasticity problem in a rotating disk,” J. Therm. Stresses., vol. 38, pp. 1269–1291, 2015.
  • M. A. Kouchakzadeh, A. Entezari, and E. Carrera, “Couple and uncoupled thermoelasticity solution for a rotating disk using analytical method,” presented at the 23rd Conference of the Italian Association of Aeronautics and Astronautics (AIDAA2015), November 17–19, 2015, Torino, Italy, 2015.
  • A. M. Zenkour and H. F. El-Mekawy, “On a multi-phase-lag model of coupled thermoelasticity,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104722, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.
  • J. N. Sharma and R. Kaur, “Transverse vibrations in thermoelastic-diffusive thin micro-beam resonators,” J. Therm. Stresses., vol. 37, no. 11, pp. 1265–1285, 2014. DOI: 10.1080/01495.739.2014.936252.
  • I. Kaur, K. Singh, and E. Craciun, “Recent advances in the theory of thermoelasticity and the modified models for the nanobeams: a review,” Discov Mech. Eng., vol. 2, pp. 2, 2022. DOI: 10.1007/s44245-023-00009-4.
  • A. S. El-Karamany and M. A. Ezzat, “Fractional phase-lag Green–Naghdi thermoelasticity theories,” J. Therm. Stresses., vol. 40, pp. 1063–1078, 2017. DOI: 10.1080/01495739.2017.1326296.
  • Y. Lev, A. Faye and K. Y. Volokh, “Thermoelastic deformation and failure of rubber-like materials,” J. Mech. Phys. Solids, vol. 122, pp. 538–554, 2019. DOI: 10.1016/j.jmps.2018.09.033.
  • D. Esan, “On a theory of thermoelasticity without energy dissipation for solids with microtemperatures,” Z. Angew. Math. Mech., vol. 98, pp. 870–885, 2018. DOI: 10.1002/zamm.201700130.
  • G. T. Houlsby and A. M. Puzrin, “A thermomechanical framework for constitutive models for rate-independent dissipative materials,” Int. J. Plasto, vol. 16, no. 9, pp. 1017–1047, 2000. DOI: 10.1016/S0749-6419(99)00073-X.
  • I. A. Abbas and M. I. Othman, “Generalized thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder,” Int. J. Thermophys., vol. 33, no. 3, pp. 567–579, 2012. DOI: 10.1007/s10765-012-1178-0.
  • K. S. Surana, Y. Mendoza, and J. N. Reddy, “On constitutive theories for thermoelastic solids in Lagrangian description using Gibbs potential,” Acta Mech., vol. 224, no. 5, pp. 1019–1044, 2013. DOI: 10.1007/s00707-012-0805-y.
  • I. Kaur, P. Lata, and K. Singh, “Thermomechanical deformation in a transversely isotropic magneto-thermoelastic rotating solids under initial stress,” Part. Diff. Eq. Appl. Math., vol. 3, pp. 100028, 2021. DOI: 10.1016/j.padiff.2021.100028.
  • J. R. Fernández and R. Quintanilla, “On the hyperbolic thermoelasticity with several dissipation mechanisms,” Arch. Appl. Mech., vol. 93, no. 7, pp. 2937–2945, 2023. DOI: 10.1007/s00419-023-02418-z.
  • W. Chen and Y. P. Zhao, “Thermo-mechanically coupled constitutive equations for soft elastomers with arbitrary initial states,” Int. J. Eng. Sci., vol. 178, pp. 103730, 2022. DOI: 10.1016/j.ijengsci.2022.103730.
  • K. S. Surana, D. Nunez, and J. N. Reddy, “Alternative forms of thermodynamics laws for thermoelastic solids and constitutive theories,” Mech. Adv. Mat. Struct., vol. 25, pp. 1297–1312, 2016. DOI: 10.1080/15376494.2016.1218225.
  • O. O. Fadodun, “A new nonlinear magnetoelastic constitutive theory with application to deformation of circular cylindrical tubes,” Mech. Adv. Mat. Struct., vol. 31, no. 1, pp. 191–201, 2023. DOI: 10.1080/15376494.2023.2257041.
  • O. O. Fadodun, O. G. Fadodun, A. S. Borokinni, B. A. Olokuntoye, O. P. Layeni, and A. P. Akinola, “Electroelastic constitutive model for dielectric semilinear hyperelastic solids with application to radial deformation of a rotating tube,” Meccanica, vol. 57, no. 9, pp. 2355–2363, 2022. DOI: 10.1007/s11012-022-01580-y.
  • A. S. Borokinni, O. O. Fadodun, B. A. Olokuntoye, O. P. Layeni, and A. P. Akinola, “Linearized torsional problem of plastic thin wires,” Mech. Res. Commun., vol. 109, pp. 99–103, 2020.
  • O. O. Fadodun, O. P. Layeni and A. P. Akinola, “Fractional wave propagation in radially vibrating non-classical cylinder,” Earthq. Struct., vol. 23, no. 5, pp. 465–471, 2017.
  • Kuku L. D., “A hyperelastic constitutive model for rubber-like materials,” Arch. Appl. Mech., vol. 90, pp. 615–622, 2020. DOI: 10.1007/s00419-019-01629-7.
  • O. O. Fadodun, “Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation,” Comput. Concr., vol. 23, no. 5, pp. 303–309, 2019.
  • A. S. Borokinni, O. O. Fadodun, O. P. Layeni, and A. P. Akinola, “Alternative approach in distortion gradient plasticity theory,” Z. Angew. Math. Phys, vol. 70, no. 4, 2019. DOI: 10.1007/s00033-019-1160-9.
  • F. M. Wakeni, B. D. Reddy, and A. T. McBride, “A thermodynamically consistent formulation of generalized thermoelasticity at finite deformation,” Inter. J. Eng. Sci., vol. 108, pp. 1–8, 2016. DOI: 10.1016/j.ijengsci.2016.08.008.
  • Q. H. Tang, X. L. Liu, C. Chen and T. C. Wang, “A constitutive equations of thermoelasticity for solid materials,” J. Therm. Stresses, vol. 38, no. 4, pp. 359–376, 2015. DOI: 10.1080/01495739.2014.985556.
  • J. Bluhum, “Constitutive relations for thermo-elastic porous solids,” ZAMM J. Appl. Math. Mech., vol. 80, pp. 125–128, 2011. DOI: 10.1002/zamm.20000801332.
  • C. Li and Y. Liao, 2018, “A new theory of nonlinear thermoelastic constitutive equation of isotropic hyperelastic materials,” IOP Conf. Ser. Mater. Sci. Eng., vol. 80, pp. 032008, 2018. DOI: 10.1088/1757-899X/322/3/032008.
  • S. Tourchi and A. Hamidi, “Thermomechanical constitutive modeling of unsaturated clay based on critical state concepts,” J. Rock Mech. Geotech. Eng., vol. 7, no. 2, pp. 193–198, 2015. DOI: 10.1016/j.jrmge.2015.02.004.
  • L. Vujosevic and V. A. Lubarda, “Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient,” Theor. Appl. Mech. (Belgr), vol. 28–29, no. 28–29, pp. 379–399, 2002. DOI: 10.2298/TAM0229379V.
  • V. A. Lubarda, “Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics,” Appl. Mech. Rev., vol. 57, no. 2, pp. 95–108, 2004. DOI: 10.1115/1.1591000.
  • R. Stojanovic, “On the stress relation in non-linear thermoelasticity,” Int. J. Non-Linear Mech., vol. 4, pp. 217–233, 1969. DOI: 10.1016/0020-7462(69)90002-X.
  • R. Stojanovic, S. Djuric, and L. Vujosevic, “On finite thermal deformations,” Arch. Mech. Stosow., vol. 16, pp. 103–108, 1964.
  • R. Stojanovic, L. Vujosevic, and D. Blagojevic, “Couple stresses in thermoelasticity,” Rev. Roum. Sci. Techn. Mec. Appl., vol. 15, pp. 517–537, 1970.
  • A. S. Borokinni, O. O. Fadodun, and A. P. Akinola, “Distortion-gradient plasticity theory for an isotropic body in finite deformation,” Meccanica, vol. 53, no. 11–12, pp. 3145–3155, 2018. DOI: 10.1007/s11012-018-0873-8.
  • M. E. Gurtin and L. Anand, “A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations,” Int. J. Plast., vol. 21, no. 12, pp. 2297–2318, 2005. DOI: 10.1016/j.ijplas.2005.01.006.
  • N. Naerlovic-Veljkovic, R. Stojanovic, and L. Vujosevic, “Application of the general theory of incompatible deformations to theormoelasticity (in Serbian),” Tehnika, vol. 1, pp. 9–12, 1969.
  • M. Micunovic, “A geometrical treatment of thermoelasticity of simple inhomogeneous bodies: I, II, and III,” Bull. Acad. Polon. Sci. Ser. Sci. Techn., vol. 22, pp. 89–97, 1974.
  • O. O. Fadodun, O. P. Layeni, and A. P. Akinola, “Nonlinear electroelasticity theory for dielectric semilinear materials,” Mech. Adv. Mat. Struct., vol. 31, no. 1, pp. 181–190, 2024. DOI: 10.1080/15376494.2023.2237338.
  • D. Guo, O. Zhang, and G. Hu, “Rational design of hyperelastic semilinear materials and its application to elastic wave control,” Mech. Mater., vol. 166, pp. 104237, 2022. DOI: 10.1016/j.mechmat.2022.104237.
  • C. Truesdell and R. Toupin, “The classical field theories,” In Principles of Classical Mechanics and Field Theory. Encyclopedia of Physics, S. Flügge, Ed. Heidelberg: Springer, vol. III/1, 1960.
  • A. Entezari, “Solution of coupled thermoelasticity problem in rotating disks,” Ph.D. thesis, Cotutelle Doctoral program between the Politecnico di Torino (Italy) and Sharif University of Technology (Iran) in Mechanical Engineering, 2017.
  • F. John, “Plane strain problem for a perfectly elastic material of harmonic type,” Commun. Pure Appl. Math., vol. 13, no. 2, pp. 239–296, 1960. DOI: 10.1002/cpa.3160130206.
  • Waterloo Maple Inc., Maplesoft, Version 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.