21
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interval finite element analysis of thermal protection system under thermomechanical coupling

, &
Pages 992-1009 | Received 03 Aug 2023, Accepted 22 Apr 2024, Published online: 09 Jul 2024

References

  • M. L. Blosser, “Development of metallic thermal protection systems for the reusable launch vehicle,” AIP Conf. Proc., vol. 387, no. 1, pp. 1125–1144, 1997. DOI: 10.1063/1.51930.
  • J. J. Bertin and R. M. Cummings, “Fifty years of hypersonics: where we’ve been, where we’re going,” Prog. Aerosp. Sci., vol. 39, no. 6–7, pp. 511–536, 2003. DOI: 10.1016/s0376-0421(03)00079-4.
  • V. T. Le, N. S. Ha and N. S. Goo, “Advanced sandwich structures for thermal protection systems in hypersonic vehicles: a review,” Compos. B Eng., vol. 226, pp. 109301, 2021. DOI: 10.1016/j.compositesb.2021.109301.
  • K. Lin, K. Hu and D. Gu, “Metallic integrated thermal protection structures inspired by the Norway spruce stem: design, numerical simulation and selective laser melting fabrication,” Opt. Laser Technol., vol. 115, pp. 9–19, 2019. DOI: 10.1016/j.optlastec.2019.02.003.
  • X. Wang et al., “Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels,” Compos. Struct., vol. 209, pp. 523–534, 2019. DOI: 10.1016/j.compstruct.2018.11.004.
  • O. Uyanna and H. Najafi, “Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects,” Acta Astronaut., vol. 176, pp. 341–356, 2020. DOI: 10.1016/j.actaastro.2020.06.047.
  • S. Bapanapalli, O. Martinez, C. Gogu, B. Sankar, R. Haftka and M. Blosser, “(Student paper) Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles,” presented at the 47th AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn., Mater. Conf. 14th AIAA/ASME/AHS Adapt. Struct. Conf. 7th, Newport, Rhode Island, 2006, pp. 1942. DOI: 10.2514/6.2006-1942.
  • Q. Yang, B. Gao, Z. Xu, W. Xie and S. Meng, “Topology optimisations for integrated thermal protection systems considering thermo-mechanical constraints,” Appl. Therm. Eng., vol. 150, pp. 995–1001, 2019. DOI: 10.1016/j.applthermaleng.2019.01.067.
  • D. Glass, “Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles,” presented at the 15th AIAA Int. Sp. Pl. Hypersonic Syst. Technol. Conf, Dayton, Ohio, 2008, pp. 2682. DOI: 10.2514/6.2008-2682.
  • S. Biamino et al., “Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness,” J. Eur. Ceram. Soc., vol. 30, no. 8, pp. 1833–1840, 2010. DOI: 10.1016/j.jeurceramsoc.2010.01.040.
  • G. Palmer, D. Kontinos and B. Sherman, “Surface heating effects of X-33 vehicle thermal-protection-system panel bowing,” J. Spacecr. Rocket, vol. 36, no. 6, pp. 836–841, 1999. DOI: 10.2514/2.3522.
  • G. Xie, Q. Wang, B. Sunden and W. Zhang, “Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating,” Appl. Therm. Eng., vol. 59, no. 1–2, pp. 425–434, 2013. DOI: 10.1016/j.applthermaleng.2013.06.002.
  • K. Triantou et al., “Thermo-mechanical performance of an ablative/ceramic composite hybrid thermal protection structure for re-entry applications,” Compos. B Eng., vol. 82, pp. 159–165, 2015. DOI: 10.1016/j.compositesb.2015.07.020.
  • S. Meng, Q. Yang, W. Xie, G. Han and S. Du, “Structure redesign of the integrated thermal protection system and fuzzy performance evaluation,” AIAA J., vol. 54, no. 11, pp. 3598–3607, 2016. DOI: 10.2514/1.J054996.
  • C. Gong, Y. Wang, L. Gu and S. Shi, “An approach for stress analysis of corrugated-core integrated thermal protection system under thermal and mechanical environment,” Compos. Struct., vol. 185, pp. 1–26, 2018. DOI: 10.1016/j.compstruct.2017.10.078.
  • K. Wei, K. Wang, X. Cheng, Y. Peng, M. Li and X. Yang, “Structural and thermal analysis of integrated thermal protection systems with C/SiC composite cellular core sandwich panels,” Appl. Therm. Eng., vol. 131, pp. 209–220, 2018. DOI: 10.1016/j.applthermaleng.2017.12.009.
  • Y. Chen, Y. Tao, B. Xu, S. Ai and D. Fang, “Assessment of thermal-mechanical performance with structural efficiency concept on design of lattice-core thermal protection system,” Appl. Therm. Eng., vol. 143, pp. 200–208, 2018. DOI: 10.1016/j.applthermaleng.2018.07.097.
  • T. Dai, B. Li, C. Tao, Z. He and J. Huang, “Thermo-mechanical analysis of a multilayer hollow cylindrical thermal protection structure with functionally graded ultrahigh-temperature ceramic to be heat resistant layer,” Aerosp. Sci. Technol., vol. 124, pp. 107532, 2022. DOI: 10.1016/j.ast.2022.107532.
  • A. Mazzaracchio and M. Marchetti, “A probabilistic sizing tool and Monte Carlo analysis for entry vehicle ablative thermal protection systems,” Acta Astronaut., vol. 66, no. 5–6, pp. 821–835, 2010. DOI: 10.1016/j.actaastro.2009.08.033.
  • J. Huang, W. Yao and P. Li, “Uncertainty dynamic theoretical analysis on ceramic thermal protection system using perturbation method,” Acta Astronaut., vol. 148, pp. 41–47, 2018. DOI: 10.1016/j.actaastro.2018.04.027.
  • M. Rivier, J. Lachaud and P. M. Congedo, “Ablative thermal protection system under uncertainties including pyrolysis gas composition,” Aerosp. Sci. Technol., vol. 84, pp. 1059–1069, 2019. DOI: 10.1016/j.ast.2018.11.048.
  • A. J. Brune, T. K. West and S. Hosder, “Uncertainty quantification of planetary entry technologies,” Prog. Aerosp. Sci., vol. 111, pp. 100574, 2019. DOI: 10.1016/j.paerosci.2019.100574.
  • I. Jordaan, Decisions under Uncertainty: Probabilistic Analysis for Engineering Decisions. Cambridge: Cambridge University Press, 2005.
  • R. Kruse, J. E. Gebhardt and F. Klowon, Foundations of Fuzzy Systems. Hoboken, NJ: John Wiley & Sons, Inc., 1994.
  • R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2009.
  • D. Moens and M. Hanss, “Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances,” Finite Elem. Anal. Des., vol. 47, no. 1, pp. 4–16, 2011. DOI: 10.1016/j.finel.2010.07.010.
  • C. Jiang, C. Fu, B. Ni and X. Han, “Interval arithmetic operations for uncertainty analysis with correlated interval variables,” Acta Mech. Sin., vol. 32, no. 4, pp. 743–752, 2016. DOI: 10.1007/s10409-015-0525-3.
  • Z. Qiu and I. Elishakoff, “Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis,” Comput. Methods Appl. Mech. Eng., vol. 152, no. 3–4, pp. 361–372, 1998. DOI: 10.1016/S0045-7825(96)01211-X.
  • A. Guerine, A. E. Hami, L. Walha, T. Fakhfakh and M. Haddar, “Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method,” Renew. Energy, vol. 113, pp. 679–687, 2017. DOI: 10.1016/j.renene.2017.06.028.
  • L. Cheng, H. Wen and D. Jin, “Uncertain parameters analysis of powered-descent guidance based on Chebyshev interval method,” Acta Astronaut., vol. 162, pp. 581–588, 2019. DOI: 10.1016/j.actaastro.2019.05.040.
  • S. C. Pereira, U. T. Mello, N. F. Ebecken and R. L. Muhanna, “Uncertainty in thermal basin modeling: an interval finite element approach,” Reliable Comput., vol. 12, no. 6, pp. 451–470, 2006. DOI: 10.1007/s11155-006-9014-5.
  • F. Domínguez-Muñoz, B. Anderson, J. M. Cejudo-López and A. Carrillo-Andrés, “Uncertainty in the thermal conductivity of insulation materials,” Energy Build., vol. 42, no. 11, pp. 2159–2168, 2010. DOI: 10.1016/j.enbuild.2010.07.006.
  • Z. Deng, Z. Guo and X. Zhang, “Non-probabilistic set-theoretic models for transient heat conduction of thermal protection systems with uncertain parameters,” Appl. Therm. Eng., vol. 95, pp. 10–17, 2016. DOI: 10.1016/j.applthermaleng.2015.10.152.
  • C. Wang, Z. Qiu, M. Xu and Y. Li, “Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters,” Appl. Math. Model., vol. 47, pp. 573–586, 2017. DOI: 10.1016/j.apm.2017.03.053.
  • Z. Lv, Z. Qiu, W. Yang and Q. Shi, “Transient thermal analysis of thin-walled space structures with material uncertainties subjected to solar heat flux - ScienceDirect,” Thin Wall. Struct., vol. 130, pp. 262–272, 2018. DOI: 10.1016/j.tws.2018.05.023.
  • C. Wang and H. G. Matthies, “Non-probabilistic interval process model and method for uncertainty analysis of transient heat transfer problem,” Int. J. Therm. Sci., vol. 144, pp. 147–157, 2019. DOI: 10.1016/j.ijthermalsci.2019.06.002.
  • H. Köylüog ˘lu and I. Elishakoff, “A comparison of stochastic and interval finite elements applied to shear frames with uncertain stiffness properties,” Comput. Struct., vol. 67, no. 1–3, pp. 91–98, 1998. DOI: 10.1016/S0045-7949(97)00160-0.
  • N. Impollonia and G. Muscolino, “Interval analysis of structures with uncertain-but-bounded axial stiffness,” Comput. Methods Appl. Mech. Eng., vol. 200, no. 21–22, pp. 1945–1962, 2011. DOI: 10.1016/j.cma.2010.07.019.
  • B. Xia and D. Yu, “Interval analysis of acoustic field with uncertain-but-bounded parameters,” Comput. Struct., vol. 112–113, pp. 235–244, 2012. DOI: 10.1016/j.compstruc.2012.08.010.
  • A. Sofi, E. Romeo, O. Barrera and A. Cocks, “An interval finite element method for the analysis of structures with spatially varying uncertainties,” Adv. Eng. Softw., vol. 128, pp. 1–19, 2019. DOI: 10.1016/j.advengsoft.2018.11.001.
  • F. He, Z. Shi, D. Qian, Y. Lu, Y. Xiang and X. Feng, “Flexural wave bandgap properties of phononic crystal beams with interval parameters,” Appl. Math. Mech.-Engl. Ed., vol. 44, no. 2, pp. 173–188, 2023. DOI: 10.1007/s10483-023-2947-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.