32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermoelastic diffusion based on a nonlocal three-phase-lag diffusion model with double porosity structure

&
Pages 1095-1129 | Received 26 Feb 2024, Accepted 26 May 2024, Published online: 08 Jul 2024

References

  • H. H. Sherief, F. A. Hamza and H. A. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci., vol. 42, no. 5-6, pp. 591–608, 2004. DOI: 10.1016/j.ijengsci.2003.05.001.
  • D. K. Sharma and D. Thakur, “Effect of three phase lag model on the free vibration analysis of nonlocal elastic generalized thermo-diffusive sphere,” Materials Today Proc., vol. 42, pp. 370–376, 2021. DOI: 10.1016/j.matpr.2020.09.560.
  • S. Kothari and S. Mukhopadhyay, “A study of the influence of diffusion inside a spherical shell under thermoelastic diffusion with relaxation times,” Math. Mech. Solid., vol. 18, no. 7, pp. 722–737, 2013. DOI: 10.1177/1081286512446829.
  • S. M. Abo-Dahab, A. M. Abd-Alla and A. A. Kilany, “Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models,” Appl. Math. Mech.-Engl. Ed., vol. 40, no. 8, pp. 1135–1154, 2019. DOI: 10.1007/s10483-019-2504-6.
  • J. J. Tripathi, G. D. Kedar and K. C. Deshmukh, “Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply,” Acta Mech., vol. 226, no. 7, pp. 2121–2134, 2015. DOI: 10.1007/s00707-015-1305-7.
  • A. M. Zenkour, “Thermal diffusion of an unbounded solid with a spherical cavity via refined three-phase-lag Green–Naghdi models,” Ind. J. Phys., vol. 96, no. 4, pp. 1087–1104, 2022. DOI: 10.1007/s12648-021-02042-z.
  • I. Kaur and P. Lata, “Rayleigh wave propagation in a transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion,” Int. J. Mech. Mater. Eng., vol. 14, no. 1, 2019. DOI: 10.1186/s40712-019-0108-3.
  • M. A. Aouadi, “A theory of thermoelastic diffusion materials with voids,” Z. Angew. Math. Phys., vol. 61, no. 2, pp. 357–379, 2010. DOI: 10.1007/s00033-009-0016-0.
  • W. Nowacki, “Dynamical problems of thermodiffusion in solids-I,” B. Pol. Acad. Sci. Tech., vol. 22, pp. 261, 1974.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Therm. Stress., vol. 22, no. 4-5, pp. 451–476, 1999. DOI: 10.1080/014957399280832.
  • H. W. Lord and Y. H. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solid., vol. 15, no. 5, pp. 299–309, 3091967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • D. S. Chandrasekharaiah, “Thermoelasticty with second sound; a review,” Appl. Mech. Rev., vol. 39, no. 3, pp. 355–376, 1986. DOI: 10.1115/1.3143705.
  • A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress., vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elast., vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. Y. Tzou, “A unified field approach for heat conduction from macro to micro scales,” ASME J. Heat Mass Transfer, vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • S. K and R. Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stress., vol. 30, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • A. C. Eringen, “Theory of nonlocal thermoelasticity,” Int. J. Eng. Sci., vol. 12, no. 12, pp. 1063–1077, 1974. DOI: 10.1016/0020-7225(74)90033-0.
  • A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • J. W. Nunziato and S. C. Cowin, “A nonlinear theory of elastic materials with voids,” Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI: 10.1007/BF00249363.
  • S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elast., vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • S. Biswas and C. S. Mahato, “Eigenvalue approach to study Rayleigh waves in nonlocal orthotropic layer lying over nonlocal orthotropic half-space with dual-phase-lag model,” J. Therm. Stress., vol. 45, no. 12, pp. 937–959, 2022. DOI: 10.1080/01495739.2022.2075503.
  • M. Bachher and N. Sarkar, “Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer,” Waves Random Complex Media., vol. 29, no. 4, pp. 595–613, 2019. DOI: 10.1080/17455030.2018.1457230.
  • D. Singh, G. Kaur and S. K. Tomar, “Waves in nonlocal elastic solid with voids,” J. Elast., vol. 128, no. 1, pp. 85–114, 2017. DOI: 10.1007/s10659-016-9618-x.
  • C. S. Mahato and S. Biswas, “State space approach to study thermal shock problem in nonlocal thermoelastic medium with double porosity,” J. Therm. Stress., vol. 46, no. 5, pp. 415–443, 2023. DOI: 10.1080/01495739.2023.2173689.
  • S. Biswas, “Thermal shock problem in porous orthotropic medium with three-phase-lag model,” Ind. J. Phys., vol. 95, no. 2, pp. 289–298, 2021. DOI: 10.1007/s12648-020-01703-9.
  • D. Kumar, D. Singh, S. K. Tomar, S. Hirose, T. Saitoh and A. Furukawa, “Waves in nonlocal elastic material with double porosity,” Arch. Appl. Mech., vol. 91, no. 12, pp. 4797–4815, 2021. DOI: 10.1007/s00419-021-02035-8.
  • D. Ieşan and R. Quintanilla, “On a theory of thermoelastic materials with a double porosity structure,” J. Therm. Stress., vol. 37, no. 9, pp. 1017–1036, 2014. DOI: 10.1080/01495739.2014.914776.
  • D. Iesan, “A theory of thermoelastic materials with voids,” Acta. Mech., vol. 60, pp. 67–89, 1986. DOI: 10.1007/BF01302942.
  • S. Chiriţă and A. Arusoaie, “Thermoelastic waves in double porosity materials,” Eur. J. Mech. A/Solid., vol. 86, pp. 104177, 2021. DOI: 10.1016/j.euromechsol.2020.104177.
  • M. Bachher, N. Sarkar and A. Lahiri, “Generalized thermoelastic infinite medium with voids subjected to instantaneous heat sources with fractional derivative heat transfer,” Int. J. Mech. Sci., vol. 89, pp. 84–91, 2014. DOI: 10.1016/j.ijmecsci.2014.08.029.
  • C. S. Mahato and S. Biswas, “Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure,” Mech Time-Depend Mater., 2024. DOI: 10.1007/s11043-024-09669-5.
  • C. S. Mahato and S. Biswas, “State space approach to characterize Rayleigh waves in nonlocal thermoelastic medium with double porosity under three-phase-lag model,” Comput. Math. Math. Phys., vol. 64, no. 3, pp. 555–584, 2024. DOI: 10.1134/S0965542524030060.
  • S. Gupta, S. Das and R. Dutta, “Peltier and Seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent Moore-Gibson-Thompson theory”, Mech,” Adv. Mater., vol. 30, no. 3, pp. 449–472, 2023. DOI: 10.1080/15376494.2021.2017525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.