28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An intelligent computational iBCMO-DNN algorithm for stochastic thermal buckling analysis of functionally graded porous microplates using modified strain gradient theory

, &
Received 13 Dec 2023, Accepted 05 Jun 2024, Published online: 08 Jul 2024

References

  • B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys., vol. 95, no. 7, pp. 3694–3703, 2004. DOI: 10.1063/1.1650542.
  • D. Ozevin, “10 – Micro-electro-mechanical-systems (MEMS) for assessing and monitoring civil infrastructures,” in Sensor Technologies for Civil Infrastructures, M. L. Wang, J. P. Lynch, and H. Sohn, Eds., Woodhead Publishing, 2014, pp. 265–302.
  • B. Bahreyni and C. Shafai, “Application of twin-beam structures for estimation of material properties and sensor fabrication,” Can. J. Electr. Comput. Eng., vol. 31, pp. 85–88, 2006. DOI: 10.1109/CJECE.2006.259189.
  • N. Jalili and K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics, vol. 14, no. 8, pp. 907–945, 2004. DOI: 10.1016/j.mechatronics.2004.04.005.
  • P. A. Demirhan and V. Taskin, “Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach,” Compos. Part B Eng., vol. 160, pp. 661–676, 2019. DOI: 10.1016/j.compositesb.2018.12.020.
  • K. Li et al., “Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets,” Compos. Struct., vol. 204, pp. 114–130, 2018. DOI: 10.1016/j.compstruct.2018.07.059.
  • D. Chen, J. Yang, and S. Kitipornchai, “Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method,” Archiv. Civil Mech. Eng., vol. 19, no. 1, pp. 157–170, 2019. DOI: 10.1016/j.acme.2018.09.004.
  • N. V. Nguyen, H. Nguyen-Xuan, D. Lee, and J. Lee, “A novel computational approach to functionally graded porous plates with graphene platelets reinforcement,” Thin Walled Struct., vol. 150, pp. 106684, 2020. DOI: 10.1016/j.tws.2020.106684.
  • A. R. Ashoori, E. Salari, and S. A. Sadough Vanini, “Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates based on the nonlocal elasticity theory,” Int. J. Mech. Sci., vol. 119, pp. 396–411, 2016. DOI: 10.1016/j.ijmecsci.2016.10.035.
  • A. Daneshmehr, A. Rajabpoor, and A. Hadi, “Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories,” Int. J. Eng. Sci., vol. 95, pp. 23–35, 2015. DOI: 10.1016/j.ijengsci.2015.05.011.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • Y. Gholami, R. Ansari, R. Gholami, and H. Rouhi, “Nonlinear bending analysis of nanoplates made of FGMs based on the most general strain gradient model and 3D elasticity theory,” Eur. Phys. J. Plus, vol. 134, no. 4, pp. 167, 2019. DOI: 10.1140/epjp/i2019-12501-x.
  • R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and M. A. Darabi, “Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position,” Compos. Struct., vol. 127, pp. 87–98, 2015. DOI: 10.1016/j.compstruct.2015.02.082.
  • R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, and M. A. Darabi, “Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin’s strain gradient theory,” Appl. Math. Model., vol. 40, no. 23–24, pp. 9872–9891, 2016. DOI: 10.1016/j.apm.2016.06.042.
  • R. Ansari, R. Gholami, and A. Shahabodini, “Size-dependent geometrically nonlinear forced vibration analysis of functionally graded first-order shear deformable microplates,” J. Mech., vol. 32, no. 5, pp. 539–554, 2016. DOI: 10.1017/jmech.2016.10.
  • R. Gholami, R. Ansari, and H. Rouhi, “Nonlinear pull-in instability of strain gradient microplates made of functionally graded materials,” Int. J. Struct. Stab. Dyn., vol. 19, no. 2, pp. 1950007, 2018. DOI: 10.1142/S021945541950007X.
  • M. H. Shojaeefard, H. Saeidi Googarchin, M. Ghadiri, and M. Mahinzare, “Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT,” Appl. Math. Model., vol. 50, pp. 633–655, 2017. DOI: 10.1016/j.apm.2017.06.022.
  • F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • R. Ansari, M. F. Shojaei, and R. Gholami, “Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method,” Compos. Struct., vol. 136, pp. 669–683, 2016. DOI: 10.1016/j.compstruct.2015.10.043.
  • R. D. Mindlin, “Second gradient of strain and surface-tension in linear elasticity,” Int. J. Solids Struct., vol. 1, no. 4, pp. 417–438, 1965. DOI: 10.1016/0020-7683(65)90006-5.
  • R. D. Mindlin and N. N. Eshel, “On first strain-gradient theories in linear elasticity,” Int. J. Solids Struct., vol. 4, no. 1, pp. 109–124, 1968. DOI: 10.1016/0020-7683(68)90036-X.
  • M.-C. Trinh, T. Mukhopadhyay, and S.-E. Kim, “A semi-analytical stochastic buckling quantification of porous functionally graded plates,” Aerospace Sci. Technol., vol. 105, pp. 105928, 2020. DOI: 10.1016/j.ast.2020.105928.
  • X. Sun, R. Gao, and Y. Zhang, “Spectral stochastic isogeometric analysis of bending and free vibration of porous functionally graded plates,” Appl. Math. Model., vol. 116, pp. 711–734, 2023. DOI: 10.1016/j.apm.2022.12.017.
  • V.-T. Tran, T.-K. Nguyen, P. T. T. Nguyen, and T. P. Vo, “Stochastic vibration and buckling analysis of functionally graded microplates with a unified higher-order shear deformation theory,” Thin Walled Struct., vol. 177, pp. 109473, 2022. DOI: 10.1016/j.tws.2022.109473.
  • V.-T. Tran, T.-K. Nguyen, P. T. T. Nguyen, and T. P. Vo, “Stochastic collocation method for thermal buckling and vibration analysis of functionally graded sandwich microplates,” J. Therm. Stress., vol. 46, no. 9, pp. 909–934, 2023. DOI: 10.1080/01495739.2023.2217243.
  • Q. X. Lieu, J. Lee, D. Lee, S. Lee, D. Kim, and J. Lee, “Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm,” Thin Walled Struct., vol. 124, pp. 588–604, 2018. DOI: 10.1016/j.tws.2017.11.054.
  • J. S. Moita, A. L. Araújo, V. F. Correia, C. M. Mota Soares, and J. Herskovits, “Material distribution and sizing optimization of functionally graded plate-shell structures,” Compos. Part B Eng., vol. 142, pp. 263–272, 2018. DOI: 10.1016/j.compositesb.2018.01.023.
  • V. M. Franco Correia, J. F. Aguilar Madeira, A. L. Araújo, and C. M. Mota Soares, “Multiobjective optimization of ceramic-metal functionally graded plates using a higher order model,” Compos. Struct., vol. 183, pp. 146–160, 2018. DOI: 10.1016/j.compstruct.2017.02.013.
  • A. Kaveh and V. Kalatjari, “Topology optimization of trusses using genetic algorithm, force method and graph theory,” Numer. Methods Eng., vol. 58, no. 5, pp. 771–791, 2003. DOI: 10.1002/nme.800.
  • N. S. Khot, L. Berke, and V. B. Venkayya, “Comparison of optimality criteria algorithms for minimum weight design of structures,” AIAA J., vol. 17, no. 2, pp. 182–190, 1979. DOI: 10.2514/3.61093.
  • R. Sedaghati, “Benchmark case studies in structural design optimization using the force method,” Int. J. Solids Struct., vol. 42, no. 21–22, pp. 5848–5871, 2005. DOI: 10.1016/j.ijsolstr.2005.03.030.
  • X.-S. Yang, “Firefly algorithms for multimodal optimization,” in Stochastic Algorithms: Foundations and Applications, Berlin; Heidelberg: Springer Berlin Heidelberg, 2009.
  • F. Neri and C. Cotta, “Memetic algorithms and memetic computing optimization: a literature review,” Swarm Evol. Comput., vol. 2, pp. 1–14, 2012. DOI: 10.1016/j.swevo.2011.11.003.
  • M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53–66, 1997. DOI: 10.1109/4235.585892.
  • R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. DOI: 10.1109/MHS.1995.494215.
  • D. T. T. Do, H. Nguyen-Xuan, and J. Lee, “Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach,” Appl. Math. Model., vol. 87, pp. 501–533, 2020. DOI: 10.1016/j.apm.2020.06.002.
  • T. Le-Duc, Q.-H. Nguyen, and H. Nguyen-Xuan, “Balancing composite motion optimization,” Inform. Sci., vol. 520, pp. 250–270, 2020. DOI: 10.1016/j.ins.2020.02.013.
  • H. Thanh Duong, H. Chi Phan, T.-T. Le, and N. Duc Bui, “Optimization design of rectangular concrete-filled steel tube short columns with balancing composite motion optimization and data-driven model,” Structures, vol. 28, pp. 757–765, 2020. DOI: 10.1016/j.istruc.2020.09.013.
  • S. Khatir, S. Tiachacht, C. Le Thanh, E. Ghandourah, S. Mirjalili, and M. Abdel Wahab, “An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates,” Compos. Struct., vol. 273, pp. 114287, 2021. DOI: 10.1016/j.compstruct.2021.114287.
  • V.-T. Tran, T.-K. Nguyen, H. Nguyen-Xuan, and M. Abdel Wahab, “Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm,” Thin Walled Struct., vol. 182, pp. 110267, 2023. DOI: 10.1016/j.tws.2022.110267.
  • A. M. Zenkour and M. H. Aljadani, “Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates,” Eur. J. Mech. A/Solids, vol. 78, pp. 103835, 2019. DOI: 10.1016/j.euromechsol.2019.103835.
  • F. A. Fazzolari and E. Carrera, “Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions,” J. Therm. Stress., vol. 37, no. 12, pp. 1449–1481, 2014. DOI: 10.1080/01495739.2014.937251.
  • T.-K. Nguyen, H.-T. Thai, and T. P. Vo, “A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates,” J. Therm. Stress., vol. 44, no. 3, pp. 1–21, 2021. DOI: 10.1080/01495739.2020.1869127.
  • L. C. Trinh et al., “Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads,” Compos. Part B Eng., vol. 124, pp. 218–241, 2017. DOI: 10.1016/j.compositesb.2017.05.042.
  • A. Farzam and B. Hassani, “Size-dependent analysis of FG microplates with temperature-dependent material properties using modified strain gradient theory and isogeometric approach,” Compos. Part B Eng., vol. 161, pp. 150–168, 2019. DOI: 10.1016/j.compositesb.2018.10.028.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells. 2nd ed., Boca Raton, FL: CRC Press, 2003.
  • S. Sahmani and R. Ansari, “On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory,” Compos. Struct., vol. 95, pp. 430–442, 2013. DOI: 10.1016/j.compstruct.2012.07.025.
  • R. Gholami and R. Ansari, “A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates,” Nonlin. Dyn., vol. 84, no. 4, pp. 2403–2422, 2016. DOI: 10.1007/s11071-016-2653-0.
  • M. Aydogdu, “Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method,” Int. J. Mech. Sci., vol. 47, no. 11, pp. 1740–1755, 2005. DOI: 10.1016/j.ijmecsci.2005.06.010.
  • T.-K. Nguyen, T. P. Vo, B.-D. Nguyen, and J. Lee, “An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory,” Compos. Struct., vol. 156, pp. 238–252, 2016. DOI: 10.1016/j.compstruct.2015.11.074.
  • A. Jafari and M. Ezzati, “Investigating the non-classical boundary conditions relevant to strain gradient theories,” Phys. E Low Dimens. Syst. Nanostruct., vol. 86, pp. 88–102, 2017. DOI: 10.1016/j.physe.2016.09.012.
  • S. Makridakis et al., “The accuracy of extrapolation (time series) methods: results of a forecasting competition,” J. Forecast., vol. 1, no. 2, pp. 111–153, 1982. DOI: 10.1002/for.3980010202.
  • T. Szandała, “Review and comparison of commonly used activation functions for deep neural networks,” in Bio-inspired Neurocomputing, A. K. Bhoi, P. K. Mallick, C. M. Liu, and V. E. Balas, Eds. Singapore: Springer, 2021, pp. 203–224.
  • G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020. DOI: 10.1007/s10462-020-09838-1.
  • S. Makridakis et al., “The accuracy extrapolation (time series) methods: results a forecasting competition,” J. Forecast., vol. 1, no. 2, pp. 111–153, 1982.
  • D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” International Conference on Learning Representations, 2014.
  • G. E. Hinton, “A practical guide to training restricted Boltzmann machines,” in Neural Networks: Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin; Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–619.
  • M. Aydogdu, “Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory,” Compos. Struct., vol. 82, no. 1, pp. 155–157, 2008. DOI: 10.1016/j.compstruct.2006.10.004.
  • C. H. Thai, A. J. M. Ferreira, and H. Nguyen-Xuan, “Isogeometric analysis of size-dependent isotropic and sandwich functionally graded microplates based on modified strain gradient elasticity theory,” Compos. Struct., vol. 192, pp. 274–288, 2018. DOI: 10.1016/j.compstruct.2018.02.060.
  • S. Thai, H.-T. Thai, T. P. Vo, and V. I. Patel, “Size-dependent behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis,” Comput. Struct., vol. 190, pp. 219–241, 2017. DOI: 10.1016/j.compstruc.2017.05.014.
  • B. Zhang, Y. He, D. Liu, L. Shen, and J. Lei, “An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation,” Appl. Math. Model., vol. 39, no. 13, pp. 3814–3845, 2015. DOI: 10.1016/j.apm.2014.12.001.
  • A. M. Zenkour and A. F. Radwan, “Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a quasi-3D model,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 20, no. 2, pp. 85–98, 2019. DOI: 10.1080/15502287.2019.1568618.
  • H. Yaghoobi and M. Torabi, “Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions,” J. Therm. Stress., vol. 36, no. 9, pp. 869–894, 2013. DOI: 10.1080/01495739.2013.770356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.