230
Views
7
CrossRef citations to date
0
Altmetric
MAGNETIC ADSORPTION

Phosphocholine-Modified Magnetic Nanoparticles for Isolation of C-Reactive Protein from Human Serum

, , , , , & show all
Pages 2600-2607 | Received 04 Oct 2012, Accepted 17 May 2013, Published online: 18 Oct 2013

REFERENCES

  • Horák, D., Babič, M., Macková, H., and Beneš, M.J., 2007. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations., J. Sep. Sci. 30 (11) (2007), pp. 1751–1772.
  • Lin, Z.A., Zheng, J.N., Lin, F., Zhang, L., Cai, Z., and Chen, G.N., 2011. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins., J. Mater. Chem. 21 (2011), pp. 518–524.
  • Shen, W., Zhong, H., Neff, D., and Norton, M.L., 2009. NTA directed protein nanopatterning on DNA Origami nanoconstructs, J. Am. Chem. Soc. 131 (2009), pp. 6660–6661.
  • Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., and Thomas, O.R.T., 2006. Protein purification using magnetic adsorbent particles., Appl. Microbiol. Biotechnol. 70 (5) (2006), pp. 505–516.
  • Tüzmen, N., Akdoğan, F., Kalburcu, T., Akgöl, S., and Denizli, A., 2010. Development of the magnetic beads for dye ligand affinity chromatography and application to magnetically stabilized fluidized bed system., Process Biochem. 45 (4) (2010), pp. 556–562.
  • Basar, N., Uzun, L., Güner, A., and Denizli, A., 2007. Lysozyme purification with dye affinity beads under magnetic field., Int. J. Biol. Macromol. 41 (3) (2007), pp. 234–242.
  • Xu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., Zhang, X., and Xu, B., 2004. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins., J. Am. Chem. Soc. 126 (2004), pp. 3392–3393.
  • Sahu, S.K., Chakrabarty, A., Bhattacharya, D., and Ghosh, S.K.; Pramanik P., 2011. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins, J. Nanopart. Res. 13 (6) (2011), pp. 2475–2484.
  • Takahashi, M., Yoshino, T., Takeyama, H., and Matsunaga, T., 2009. Direct magnetic separation of immune cells from whole blood using bacterial magnetic particles displaying protein G., Biotechnol Prog. 25 (1) (2009), pp. 219–226.
  • Liu, X., Guan, Y., Yang, Y., Ma, Z., Wu, X., and Liu, H., 2004. Preparation of superparamagnetic immunomicrospheres and application for antibody purification., J. Appl. Polym. Sci. 94 (5) (2004), pp. 2205–2211.
  • Girault, S., Chassaing, G., Blais, J.C., Brunot, A., and Bolbach, G., 1996. Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads., Anal. Chem. 68 (4) (1996), pp. 2122–2126.
  • Mejías, R., Costo, R., Roca, A.G., Arias, C.F., Veintemillas-Verdaguer, S., González-Carreño, T., del Puerto Morales, M., Serna, C.J., Mañes, S., and Barber, D.F., 2008. Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery, J. Controlled Release 130 (2) (2008), pp. 168–174.
  • Schwanzer-Pfeiffer, D., Mitteregger, R., Rossmanith, E., and Falkenhagen, D., 2006. Comparison of specific adsorbents for tumor necrosis factor α and therapeutic anti-tumor necrosis factor α antibodies: An in vitro sepsis model., Int. J. Artif. Organs, 29 (12) (2006), pp. 1140–1147.
  • Batalhaa, I.L., Hussaina, A., and Roque, A.C. A., 2010. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies, J. Mol. Recognit. 23 (2010), pp. 462–471.
  • Tong, X.D., Xue, B., and Sun, Y., 2001. A novel magnetic affinity support for protein adsorption and purification., Biotechnol. Prog. 17 (1) (2001), pp. 134–139.
  • Shieh, D.B., Su, C.H., Chang, F.Y., Wu, Y.N., Su, W.C., Hwu, J.R., Chen, J.H., and Yeh, C.S., 2006. Aqueous nickel-nitrilotriacetate modified Fe3O4–NH3 nanoparticles for protein purification and cell targeting., Nanotechnol. 17 (2006), pp. 4174–4182.
  • Xie, H.Y., Zhen, R., Wang, B., Feng, Y.J., Chen, P., and Hao, J., 2010. Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins, J. Phys. Chem. C 114 (2010), pp. 4825–4830.
  • Xu, F., Geiger, J.H., Baker, G.L., and Bruening, M.L., 2011. Polymer brush-modified magnetic nanoparticles for his-tagged protein purification, Langmuir 27 (2011), pp. 3106–3112.
  • Ma, Z.Y., Liu, X.Q., Guan, Y.P., and Liu, H.Z., 2006. Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins., Colloid Surface A 275 (1–3) (2006), pp. 87–91.
  • Yavuz, H., Odabaşi, M., Akgöl, S., and Denizli, A., 2005. Immobilized metal affinity beads for ferritin adsorption., J. Biomater. Sci.-Polym. Ed. 16 (2005), pp. 673–684.
  • Altintaş, E.B., Yavuz, H., Say, R., and Denizli, A., 2006. Methacryloylamidoglutamic acid having porous magnetic beads as a stationary phase in metal chelate affinity chromatography., J. Biomater. Sci.-Polym. Ed. 17 (2006), pp. 213–226.
  • Takahashi, M., Yoshino, T., Takeyama, H., and Matsunaga, T., 2009. Direct magnetic separation of immune cells from whole blood using bacterial magnetic particles displaying protein G., Biotechnol Prog. 25 (1) (2009), pp. 219–226.
  • Liu, X., Guan, Y., Yang, Y., Ma, Z., Wu, X., and Liu, H., 2004. Preparation of superparamagnetic immunomicrospheres and application for antibody purification., J. Appl. Polym. Sci. 94 (5) (2004), pp. 2205–2211.
  • Girault, S., Chassaing, G., Blais, J.C., Brunot, A., and Bolbach, G., 1996. Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads., Anal. Chem. 68 (4) (1996), pp. 2122–2126.
  • Mejías, R., Costo, R., Roca, A.G., Arias, C.F., Veintemillas-Verdaguer, S., González-Carreño, T., del Puerto Morales, M., Serna, C.J., Mañes, S., and Barber, D.F., 2008. Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery, J. Control. Release 130 (2) (2008), pp. 168–174.
  • Schwanzer-Pfeiffer, D., Mitteregger, R., Rossmanith, E., and Falkenhagen, D., 2006. Comparison of specific adsorbents for tumor necrosis factor α and therapeutic anti-tumor necrosis factor α antibodies: An in vitro sepsis model., Int. J. Artif. Organs 29 (12) (2006), pp. 1140–1147.
  • Vermeer, A.W., and Norde, W., 2000. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein., Biophys J. 78 (1) (2000), pp. 394–404.
  • Hubbuch, J.J.; Thomas O.R.T., 2002. High-gradient magnetic affinity separation of trypsin from porcine pancreatin., Biotechnol. Bioeng. 79 (3) (2002), pp. 301–313.
  • Lin, Z.A., Zheng, J.N., Lin, F., Zhang, L., Cai, Z., and Chen, G.N., 2011. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins, J. Mater. Chem. 21 (2011), pp. 518–524.
  • Agrawal, A., Xu, Y., Ansardi, D., Macon, K.J., and Volanakis, J.E., 1992. Probing the phosphocholine-binding site of human c-reactive protein by site-directed mutagenesis., J. Biol. Chem. 267 (1992), : 25352..
  • Roux, K.H., Kilpatrick, J.M., Volanakis, J.E., and Kearney, J.F., 1983. Localization of the phosphocholine-binding sites on C-reactive protein by immunoelectron microscopy., J. Immunol. 131 (5) (1983), pp. 2411–2415.
  • Tracy, R.P., 2003. Inflammation, the metabolic syndrome and cardiovascular risk, Int. J. Clin. Pract. Suppl 134 (2003), pp. 10–17.
  • Zhang, J., Rui, Y.C., Yang, P.Y., Lu, L., and Li, T.J., 2006. C-reactive protein induced expression of adhesion molecules in cultured cerebral microvascular endothelial cells, Life Sci. 78 (2006), pp. 2983–2988.
  • Volanakis, J.E., and Clements, W.L.Schrohenloher, R.E., , 1978. C-reactive protein: purification by affinity chromatography and physicochemical characterization, J. Immunol. Method 23 (1978), pp. 285–295.
  • Pruden, D.J., Connolly, K.M., and Stecher, V.J., 1988. Single-step purification of rat C-reactive protein and generation of monospecific C-reactive protein antibody., J. Chromatogr. (1988), pp. 437–410.
  • Hung, C.W., Holoman, T.R.P., Kofinas, P., and Bentley, W.E., 2008. Towards oriented assembly of proteins onto magnetic nanoparticles., Biochem. Eng. J. 38 (2008), pp. 164–170.
  • Huang, S.H., and Juang, R.S., 2011. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review., J. Nanopart. Res. 13 (2011), pp. 4411–4430.
  • Kim, E.J., Kim, H.C., Lee, S.G.; Lee S.J., Go, T.J., Baek, C.S., and Jeong, S.W., 2011. C-Reactive protein-directed immobilization of phosphocholine ligands on a solid surface, Chem. Commun. 47 (2011), pp. 11900–11902.
  • Sun, Y., Ding, X., Zheng, Z., Cheng, X., Hu, X., and Peng, Y., 2006. Magnetic separation of polymer hybrid iron oxide nanoparticles triggered by temperature., Chem. Commun. 26 (2006), pp. 2765–2767.
  • Shevchenko, A., Wilm, M., Vorm, O., and Mann, M., 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels., Anal. Chem. 68 (5) (1996), pp. 850–858.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4., Nature 227 (5259) (1970), pp. 680–685.
  • Zhang, W., and Chait, B.T., 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information., Anal. Chem. 72 (11) (2000), pp. 2482–2489.
  • Kim, T., Reis, L., Rajan, K, and Shima, M., 2005. Magnetic behavior of iron oxide nanoparticle–biomolecule assembly., J. Magn. Magn. Mat. 295 (2) (2005), pp. 132–138.
  • Sharma, V., Shukla, R.K., Saxena, N., Parmar, D., Das, M., and Dhawan, A., 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells., Toxicol. Lett. 185 (2009), pp. 211–218.
  • Moeser, G.D., Roach, K.A., Green, W.H., and Hatton, T.A., 2004. High-gradient magnetic separation of coated magnetic nanoparticles., AIChE J. 50 (11) (2004), pp. 2835–2848.
  • Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., and Webster, T.J., 2010. Bactericidal effect of iron oxide nanoparticles on, Staphylococcus aureus. Int. J. Nanomed. 5 (2010), pp. 277–283.
  • Cannas, C., Gatteschi, D., Musinu, A., Piccaluga, G., and Sangregorio, C., 1998. Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix., J. Phys. Chem. B. 102 (40) (1998), pp. 7721–7726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.