216
Views
13
CrossRef citations to date
0
Altmetric
Adsorption

Comparative Assessment of Nanostructured Metal Oxides: A Potential Step Forward to Develop Clinically Useful 99Mo/99mTc Generators using (n,γ)99Mo

, &
Pages 1825-1837 | Received 12 Aug 2013, Accepted 13 Mar 2014, Published online: 12 Aug 2014

REFERENCES

  • Eckelman, W. C. (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. J. Am. Coll. Cardiol. Img., 2: 364.
  • International Atomic Energy Agency (IAEA). (2008) Technical Report Series 466: Technetium-99m radiopharmaceuticals: Manufacture of kits. IAEA. Available at www-pub iaea org/MTCD/publications/PubDetails.asp?pubId =7867.
  • Gottschalk, A. (1969) Technetium-99m in clinical nuclear medicine. Annual Rev. Med., 20: 131.
  • Nuclear Energy Agency (2010) The Supply of Medical Radioisotopes: An Economic Study of the Molybdenum-99 Supply Chain, Organization for Economic Co-operation and Development, Paris, available at http://www.oecd-nea.org/med-radio/reports/MO-99.pdf.
  • De Goeij, J. J. M. (1997) Routes for supply of technetium-99m for diagnostic nuclear medicine. Trans. Am. Nucl. Soc., 77: 519.
  • Bremer, K. (1987) Large-Scale Production and Distribution of Tc-99m Generators for Medical Use. Radiochim. Acta, 41: 73.
  • Molinsky, V. J. (1982) A review of 99mTc generator technology. Int. J. Appl. Radiat. Isot., 33, 811.
  • Pillai, M. R. A.; Dash, A.; Knapp, F. F. (Russ) Jr. (2013) Sustained availability of technetium-99m-possible paths forward. J. Nucl. Med., 54(2): 313.
  • Ramamoorthy, N. (2009) Commentary: supplies of molybdenum-99 – need for sustainable strategies and enhanced international cooperation, Nucl. Med. Comm., 30: 899.
  • Lantheus Medical Imaging Inc. 99Mo and 99mTc: Radioisotopes critical to nuclear medicine, 2009. Available at: http://www.lantheus.com/SupplyUpdate/pdf/Moly-FactSheet-v3_07Oct10.pdf
  • IAEA Staff Report, IAEA helps to close radioisotope production gap. Available at: http://www.iaea.org/newscenter/news/2011/prodgap.html
  • Einstein, A. J. (2009) Breaking America’s dependence on imported molybdenum, JACC. Cardiovasc. Imaging, 2(3): 369.
  • Lyra, M.; Charalambatou, P.; Roussou, E.; Fytros, S.; Baka, I. (2011) Alternative production methods to face global molybdenum-99 supply shortage. Hell. J. Nucl. Med., 14(1): 49.
  • Ballinger, J. R. (2010) Short- and long-term responses to molybdenum-99 shortages in nuclear medicine. Br. J. Radiol., 83: 899.
  • Kahn, L. H.; von Hippel, F. (2007) How the radiologic and nuclear medical communities can improve nuclear security. J. Am. Coll. Radiol., 4: 248.
  • Williams, B.; Ruff, T. A. (2007) Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production. Med. Confl. Surviv., 23(4): 267.
  • Loukianova, A.; Hansell, C. (2008) Leveraging US policy for a global commitment to HEU elimination. Nonproliferation. Rev., 15: 159.
  • Hansell, C. (2008) Nuclear medicine’s double hazard imperiled treatment and the risk of terrorism. Nonproliferation Rev., 15: 185.
  • Dash, A; Knapp, F. F. (Russ) Jr.; Pillai, M. R. A. (2013) 99Mo/99mTc separation: An assessment of technology options. Nucl. Med. Biol., 40(2): 167.
  • Tanase, M.; Tatenuma, K.; Ishikawa, K.; Kurosawa, K.; Nishino, M.; Hasegawa, Y. (1997) A 99mTc generator using a new inorganic polymer adsorbent for (n, [gamma]) 99Mo. Appl. Radiat. Isot., 48: 607.
  • So, L. V.; Nguyen, C. D.; Pellegrini, P.; Bui, V. C. (2009) Polymeric titanium oxychloride sorbent for188W/188Re nuclide pair separation. Sep. Sci. Technol., 44: 1074.
  • Lee, J. S.; Han, H. S.; Park, U. J.; Son, K. J.; Shin, H.Y.; Hong, S. B.; Jang, K. D.; Lee, J. S. (2010) Adsorbents for radioisotopes, preparation method thereof, and radioisotope generators using the same. U.S. Patent US2010/0248955A1, September 30, 2010.
  • Chakravarty, R.; Dash, A. (2013) Role of nanoporous materials in radiochemical separations for biomedical applications. J. Nanosci. Nanotechnol., 13: 2431.
  • Chakravarty, R.; Shukla, R.; Tyagi, A. K.; Dash, A. (2012) In (Ariga K Ed.) RSC Nanoscience & Nanotechnology No. 24. Manipulation of Nanoscale Materials: An Introduction to Nanoarchitectonics. Royal Society of Chemistry: U.K., pp 259–301.
  • Chakravarty, R.; Shukla, R.; Gandhi, S.; Ram, R.; Dash, A.; Venkatesh, M.; Tyagi, A. K. (2008) Polymer embedded nanocrystalline titania sorbent for 99Mo-99mTc generator. J. Nanosci. Nanotechnol., 8: 4447.
  • Chakravarty, R.; Shukla, R.; Ram, R.; Tyagi, A. K.; Dash, A.; Venkatesh, M. (2010) Practicality of tetragonal nano-zirconia as a prospective sorbent in the preparation of 99Mo/99mTc generator for biomedical applications. Chromatographia, 72: 875.
  • Chakravarty, R.; Ram, R.; Dash, A.; Pillai, M. R. A. (2012) Preparation of clinical-scale 99Mo/99mTc column generator using neutron activated low specific activity 99Mo and nanocrystalline γ-Al2O3 as column matrix. Nucl. Med. Biol., 39: 916.
  • Chakravarty, R.; Ram, R.; Mishra, R.; Sen, D.; Mazumder, S.; Pillai, M. R. A.; Dash, A. (2013) Mesoporous alumina (MA) based double column approach for development of clinical scale 99Mo/99mTc generator using (n,γ)99Mo: An enticing application of nanomaterial. Ind. Eng. Chem. Res. (DOI:10.1021/ie40104)
  • Parks, G. A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals. Adv. Chem. Ser., 67: 121.
  • Spanos, N.; Lycourghiotis, A. (1994) Molybdenum-oxo species deposited on alumina by adsorption: III. Advances in the mechanism of Mo (VI) deposition. J. Catal., 147: 57.
  • Hasegawa, Y.; Nishino, M.; Takeuchi, T.; Tatenuma, K.; Tanase, M.; Kurosawa, K. (1997) Mo adsorbent for 99Mo-99mTc generators and manufacturing thereof. U.S. Patent 5,681,974, October 28, 1997.
  • Mushtaq, A.; Mansoor, M. S.; Karim, H. M. A.; Khan, M. A. (1991) Hydrated titanium dioxide as an adsorbent for 99Mo/99mTc generator. J. Radioanal. Nucl. Chem., 147: 257.
  • Qazi, Q.M.; Mushtaq, A. (2011) Preparation and evaluation of hydrous titanium oxide as a high affinity adsorbent for molybdenum (99Mo) and its potential for use in 99mTc generators. Radiochim. Acta., 99: 231.
  • Gómez, J. S.; Correa, F. G. (2002) 99mTc generator with hydrated MnO2 as adsorbent of 99Mo. J. Radional. Nucl. Chem., 254: 625.
  • Serrano, J.; Bertin, V.; Bulbulian, S. (2000) 99Mo sorption by thermally treated hydrotalcites. Langmuir, 16: 3355.
  • Knapp, F. F. (Russ) Jr.; Mirzadeh, S. (1994) The continuing important role of radionuclide generator systems for nuclear medicine. Eur. J. Nucl. Med., 21: 1151.
  • Chakravarty, R.; Dash, A. (2014) Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. J. Radioanal. Nucl. Chem., 299: 741.
  • British Pharmacopoeia Commission, British Pharmacopoeia, The Stationery Office, Norwich, U.K. 2008 (www.pharmacopoeia.org.uk)
  • Beyerlein, I. J.; Caro, A.; Demkowicz, M. J.; Mara, N. A.; Misra, A.; Uberuaga, B. P. (2013) Radiation damage tolerant nanomaterials. Materials Today, 16: 443.
  • Shivarudrappa, V.; Vimalnath, K. V. (2005) High purity materials as targets for radioisotope production: Needs and challenges. Bull. Mater. Sci., 28: 325.
  • International Atomic Energy Agency. Operation Research Reactors in the World [database]. Available at www.naweb.iaea.org/napc/physics/research_reactors/database/RR%20Data%20Base/datasets/foreword_home.html(Accessed on July 1, 2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.