225
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Liquid Membrane Permeation with Supported Liquid Membranes and their Application in Li-ion Battery Recycling

, &
Pages 2937-2947 | Received 02 Dec 2014, Accepted 18 Aug 2015, Published online: 08 Jan 2016

REFERENCES

  • Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B. (2008) A review of processes and technologies for the recycling of Lithium-ion secondary batteries. Journal of Power Sources, 177(2):512– 527.
  • Lee, C. K.; Rhee, K. I. (2003) Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy, 68(1–3): 5–10.
  • Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. (2012) Development of a recycling process for Li-ion batteries. Journal of Power Sources, 207(0):173–182.
  • Lee, C. K.; Rhee, K. I. (2002) Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources, 109(1):17–21.
  • Cobalt Facts - Cobalt in Electronics (2006) http://¬www.thecdi.com/¬cdi/¬images/-documents/¬facts/¬COBALT_FACTS-Electronics.pdf.
  • Lazarova, Z.; Syska, B.; Schügerl, K. (2002) Application of large-scale hollow fiber membrane contactors for simultaneous extractive removal and stripping of penicillin G. Journal of Membrane Science, 202:151–164.
  • Ishizu, H.; Habaki, H.; Kawasaki, J. (2003) Permeation and concentration of compactin by a liquid membrane technique. Journal of Membrane Science, 213(1):209–219.
  • Kertèsz, R.; Schlosser, S.; Simo, M. (2004) Mass-transfer characteristics of spiral-channel SLM module in pertraction of phenylalanine. Desalination, 163:103–117.
  • Juang, R. S.; Huang, R. H. (1997) Equilibrium studies on reactive extraction of lactic acid with an amine extractant. The Chemical Engineering Journal, 65(1):47–53.
  • Marták, J.; Schlosser, S.; Vlcková, S. (2008) Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318:298.
  • Marták, J.; Schlosser, S. (2007) Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57(3):483–494.
  • Nughnoi, P.; Yano, T.; Nishio, N.; Nagai S. (1987) Extraction of volatile fatty acides from diluted aqueous solution using a supported liquid membrane. Journal of Fermentation Technology, 65(3):301–310.
  • Matsumoto, M.; Inomoto, Y.; Kondo, K. (2005) Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. Journal of Membrane Science, 246(1):77–81.
  • Duan, S.; Ito, A.; Ohkawa, A. (2003) Separation of propylene/propane mixture by a supported liquid membrane containing triethylene glycol and a silver salt. Journal of Membrane Science, 215:53–60.
  • Adebayo, A. O.; Sarangi, K. (2008) Separation of copper from chalcopyrite leach liquor containing copper, iron, zinc and magnesium by supported liquid membrane. Separation Science and Technology, 63:362–399.
  • Liu, J. F.; Chao, J. B.; Jiang, G. B. (2002) Continuous flow liquid membrane extraction: a novel automatic trace enrichment technique based on continuous flow liquid-liquid extraction combined with supported liquid membrane. Analytica Chimca Acta, 455(1):93–101.
  • Parthasarathy, N.; Pelletier, M.; Buffle, J. (1997) Hollow fiber based supported liquid membrane: a novel analytical system for trace metal analysis. Analytica Chimica Acta, 350(1-2):183-195.
  • Danesi, P. R.; Reichley-Yinger, L.; Cianetti, C.; Rickert, P. G. (1986) A composite supported liquid membrane for ultraclean Co-Ni separations. Solvent Extr. Ion Exchange, 4(4):639–662.
  • Ren, Z.; Zhang, W.; Liu, Y. M.; Dai, Y.; Cui, C. (2007) New liquid membrane technology for simultaneous extraction and stripping of Copper(II) from wastewater. Chemical Engineering Science, 62:6090–6101.
  • Zhang, W.; Cui, C.; Ren, Z.; Dai, Y.; Meng, H. (2010) Simultaneous removal and recovery of Copper(II) from acidic wastewater by hollow fiber renewal liquid membrane with LIX984N as carrier. Chemical Engineering Journal,157:230–237.
  • Luciano, R. M.; Bedendo, G. C.; Carletto, J. S.; Carasek, E. (2010) Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS. Journal of Hazardous Materials, 177:567–572.
  • Raut, D. R.; Mohapatra, P. K.; Ansari, S. A.; Sarkar, A.; Manchanda, V. K. (2008) Selective transport of radio-cesium by supported liquid membranes containing calyx[4]crown-6 ligands as the mobile carrier. Desalination, 232:262–271.
  • Alguacil, F. J.; Alonso, M.; Sastre, A. M. (2005) Facilitated supported liquid membrane transport of Gold (I) and Gold (III) using Cyanex® 921. Journal of Membrane Science, 252:237–244.
  • Yang, X. J.; Fane, A. G. (1999) Performance and stability of supported liquid membranes using LIX 984N for Copper transport. Journal of Membrane Science, 156:251–263.
  • Kocherginsky, N. M.; Yang, Q.; Seelam, L. (2007) Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53(2):171–177.
  • Balchen, M.; Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard S. (2007) Electrokinetic migration of acidic drugs across a supported liquid membrane. Journal of Chromatography A, 1152(1–2):220– 225.
  • Uribe, I. O.; Wongswan, S.; Perez de Ortiz, E. S. (1988) A systematic method for the study of the rate-controlling mechanisms in liquid membrane permeation processes. Extraction of zinc by bis(2-ethylhexyl)phosphoric acid. Industrial & Engineering Chemistry Research, 27(9):1696–1701.
  • Franken, T. (1997) Liquid membranes-academic exercise or industrial separation process? Membrane Technology, 85:6–10.
  • Teramoto, M.; Sakaida, Y.; Fu, S. S.; Ohnishi, N.; Matsuyama, H.; Maki, T.; Fukui, T.; Arai, K. (2000) An attempt for the stabilization of supported liquid membrane. Separation and Purification Technology, 21:137–144.
  • Neplenbroek, A. M.; Bargemna, D.; Smolders, C. A. (1992) Supported liquid membranes: Stabilization by gelation. Journal of Membrane Science, 67:149–165.
  • Kemperman, A. J. B.; Rolevink, H. H. M.; van den Boomgaard, Th.; Strathmann, H. (1997) Hollow-fiber-supported liquid membranes with improved stability for nitrate removal. Separation and Purification Technology, 12:119–134.
  • Kemperman, A. J. B.; Rolevink, H. H. M.; Bargeman, D.; van den Boomgaard, Th.; Strathmann, H. (1998) Stabilization of supported liquid membranes by interfacial polymerization top layers. Journal of Membrane Science, 138(1):237–258.
  • Yang, X. J.; Fane, A. G.; Bi, H. J.; Griesser, H. J. (2000) Stabilization of supported liquid membranes by plasma polymerization surface coating. Journal of Membrane Science, 168:29.
  • Wijers, M. C.; Jin, M.; Wessling, M.; Strathmann, H. (1998) Supported liquid membranes modification with sulfonated poly(ether ether ketone): Permeability, selectivity and stability. Journal of Membrane Science,147(1):117–130.
  • He, T. (2008) Towards stabilization of supported liquid membranes: preparation and characterization of polysulfone support and sulfonated poly (ether ether ketone) coated composite hollow fiber membranes. Desalination, 225(1-3):82-94.
  • Hernàndez-Fernàndez, F. J.; de los Rìos, A. P.; Rubio, M.; Tomàs-Alonso, F.; Gòmez, D.; Vìllora, G. (2007) A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction. Journal of Membranes Science, 293(1):73–80.
  • Nakano, M.; Takahashi, K.; Takeuchi, H. (1987) A method for continuous operation of supported liquid membranes. Journal of Chemical Engineering of Japan, 20(3):410–415.
  • Fritz, M.; Siebenhofer, M. (2010) Neue Entwicklungen in der Flüssigmembranperme-ation mit gestützten Membranen. Chemie Ingenieur Technik 82 (12):2103–2108.
  • Fritz, M.; Siebenhofer, M. (2008) Improving the performance of supported liquid membranes. Proceedings of International Solvent Extraction Conference, Tucson, Arizona, 15-19 September 2008.
  • Mörters, M., Bart, H. J. (2003) Mass transfer into droplets undergoing reactive extraction. Chemical Engineering and Processing, 42(10):801– 809.
  • Juang, R. S.; Chang, Y. T. (1993) Kinetics and mechanism for Copper(II) extraction from sulfate solutions with bis(2-ethylhexyl)phosphoric acid. Industrial & Engineering Chemistry Research, 32(1):207–213.
  • Sengupta, B.; Sengupta, R.; Subrahmanyam, N. (2006) Copper extraction into emulsion liquid membranes using LIX 984N. Hydrometallurgy, 81(1):67–73.
  • Bart, H. J. (2001) Reactive Extraction; Springer: Berlin.
  • Wetzer, H. (1985) Kennzahlen der Verfahrenstechnik, Dr. Alfred Hüttig Verlag Heidelberg.
  • Alguacil, F. J.; Alonso, M. (2003) Chromium(VI) removal through facilitated transport using Cyanex 923 as carrier and reducing stripping with hydrazine sulfate. Environmental Science & Technology, 37(5):1043–1047.
  • Huang, T. C.; Juang, R. S. (1987) Transport of Zinc through a supported liquid membrane using di(2-ethylhexyl) phosphoric acid as a mobile carrier. Journal of Membrane Science, 31(2-3):209–226.
  • Mörters, M.; Bart, H. J. (2000) Extraction equilibria of Zinc with Bis(2-ethylhexyl)phosphoric acid. Journal of Chemical Engineering Data, 45(1): 82–85.
  • Danesi, P. R.; Chiarizia, R., Castagnola, A. (1983) Transfer rate and separation of Cd(II) and Zn(II) chloride species by a trilaurylammonium chloride triethylbenzene supported liquid membrane. Journal of Membrane Science, 14(2):161–174.
  • Mager, K. (1973) Verfahrensmöglichkeiten der Zink-Elektrolyse. Chemie-Ingenieur Technik, 45(4): 157–161.
  • Pletcher D. (1982) Industrial Electrochemistry; Springer: Amsterdam.
  • Draxler, J.; Fürst, W.; Marr, R. (1988) Separation of metal species by emulsion liquid membranes. Journal of Membrane Science, 38: 281– 293.
  • Bart, H. J.; Ramaseder, C.; Haselgrübler, T.; Marr, R. (1992) The investigation of osmosis in the liquid membrane technique: Influence of key parameters. Hydrometallurgy, 28: 253–267.
  • Nan, J.; Han, D.; Zuo, X. (2005) Recovery of metal values from spent Lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources, 152(0):278–284.
  • Wang, R. C.; Lin, Y. C.; Wu, S. H. (2009) A novel recovery process of metal values from the cathode active materials of the Lithium-ion secondary batteries. Hydrometallurgy, 99: 194– 201.
  • Shin, S. M.; Kim, N. H.; Sohn, J. S.; Yang, D. H.; Kim, Y. H. (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79:172–181.
  • Chen, L.; Tang, X.; Zhang, Y.; Li, L.; Zeng, Z.; Zhang, Y. (2011) Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy, 108:80–86.
  • Mantuano, D. P.; Dorella, G.; Elias, R. C. A.; Mansur, M. B. (2006)Analysis of a hydrometalurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. Journal of Power Sources</i>,159(2):1510 – 1518.
  • Dorella, G.; Mansur, M. B. (2007) A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources, 170(1):210– 215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.