566
Views
34
CrossRef citations to date
0
Altmetric
Extraction

Recovery of flavonoids from grape skins by enzyme-assisted extraction

, , , , &
Pages 255-268 | Received 28 Apr 2015, Accepted 19 Aug 2015, Published online: 22 Dec 2015

References

  • OIV Statistical Report on World Vitiviniculture (2013) In International Organization of Vine and Wine.
  • de la Cerda-Carrasco, A.; Lopez-Solis, R.; Nunez-Kalasic, H.; Pena-Neira, A.; Obreque-Slier, E. (2015) Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric., 95(7): 1521–1527.
  • Ky, I.; Teissedre, P. L. (2015) Characterisation of Mediterranean grape pomace seed and skin extracts: Polyphenolic content and antioxidant activity. Molecules, 20(2): 2190–2207.
  • Harsha, P. S. C. S.; Gardana, C.; Simonetti, P.; Spigno, G.; Lavelli, V. (2013) Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Biores. Technol., 140: 263–268.
  • Gonzalez-Centeno, M. R.; Jourdes, M.; Femenia, A.; Simal, S.; Rossello, C.; Teissedre, P. L. (2013) Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.) J. Agric. Food Chem., 61(47): 11579–11587.
  • Pinelo, M.; Arnous, A.; Meyer, A. S. (2006) Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol, 17(11): 579–590.
  • Gollücke, A. P. B. (2010) Recent applications of grape polyphenols in food, beverages and supplements. Recent Pat. Food, Nutrit.Agric., 2: 105–109.
  • Eibach, R. T. R. (2003) Success in resistance breeding ‘Regent’ and its steps into the market. Acta Hort. 603: 687–691.
  • Reisch, B. I. O.; Cousins, P. S. (2012) Grapes. In Handbook of Plant Breeding: Fruit Breeding;Badenes, M. L. B. D. H., Ed.; Springer: New York, pp 225–263.
  • Flamini, R.; Tomasi, D. (2000) The anthocyanin content in berries of the hybrid grape cultivars Clinton and Isabella. Vitis, 39(2): 79–81.
  • Castillo-Munoz, N.; Gomez-Alonso, S.; Garcia-Romero, E.; Hermosin-Gutierrez, I. (2007) Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem., 55(3): 992–1002.
  • Ivanova, V.; Stefova, M.; Vojnoski, B.; Dornyei, A.; Mark, L.; Dimovska, V.; Stafilov, T.; Kilar, F. (2011) Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int., 44(9): 2851–2860.
  • Novak, I.; Janeiro, P.; Seruga, M.; Oliveira-Brett, A. M. (2008) Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Anal. Chim. Acta, 630(2): 107–115.
  • Carrera, C.; Ruiz-Rodriguez, A.; Palma, M.; Barroso, C. G. (2012) Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim Acta, 732: 100–104.
  • Ghassempour, A.; Heydari, R.; Talebpour, Z.; Fakhari, A. R.; Rassouli, A.; Davies, N.; Aboul-Enein, H. Y. (2008) Study of new extraction methods for separation of anthocyanins from red grape skins: Analysis by HPLC and LC-MS/MS. J. Liq. Chrom. Rel. Technol., 31(17): 2686–2703.
  • Liazid, A.; Guerrero, R. F.; Cantos, E.; Palma, M.; Barroso, C. G. (2011) Microwave assisted extraction of anthocyanins from grape skins. Food Chem., 124(3): 1238–1243.
  • Vergara-Salinas, J. R.; Vergara, M.; Altamirano, C.; Gonzalez, A.; Perez-Correa, J. R. (2015) Characterization of pressurized hot water extracts of grape pomace: Chemical and biological antioxidant activity. Food Chem., 171: 62–69.
  • Aizpurua-Olaizola, O.; Ormazabal, M.; Vallejo, A.; Olivares, M.; Navarro, P.; Etxebarria, N.; Usobiaga, A. (2015) Optimization of supercritical fluid consecutive extractions of fatty acids and polyphenols from vitis vinifera grape wastes. J. Food Sci., 80(1): E101–E107.
  • Boonchu, T.; Utama-ang, N. (2015) Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. J. Food Sci. Technol., 52(2): 783–792.
  • Tzima, K.; Kallithraka, S.; Kotseridis, Y.; Makris, D. P. (2015) A comparative evaluation of aqueous natural organic acid media for the efficient recovery of flavonoids from red grape (Vitis vinifera) pomace. Waste Biomass Valor., 6(3): 391–400.
  • Chemat, F.; Vian, M. A.; Cravotto, G. (2012) Green extraction of natural products: Concept and principles. Int. J. Mol. Sci., 13(7): 8615–8627.
  • Puri, M.; Sharma, D.; Barrow, C. J. (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol., 30(1): 37–44.
  • Jayani, R. S.; Saxena, S.; Gupta, R. (2005) Microbial pectinolytic enzymes: A review. Proc. Biochem., 40(9): 2931–2944.
  • Biscaro Pedrolli, D. C. M., A.; Gomes, E.; Cano Carmona, E. (2009) Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J, 3: 9–18.
  • Meyer, A. S.; Jepsen, S. M.; Sorensen, N. S. (1998) Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. J. Agric.Food Chem., 46(7): 2439–2446.
  • Kammerer, D.; Claus, A.; Schieber, A.; Carle, R. (2005) A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J. Food Sci., 70(2): C157–C163.
  • Maier, T.; Goppert, A.; Kammerer, D. R.; Schieber, A.; Carle, R. (2008) Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol., 227(1): 267–275.
  • Chamorro, S.; Viveros, A.; Alvarez, I.; Vega, E.; Brenes, A. (2012) Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chem, 133(2): 308–314.
  • Landbo, A. K.; Meyer, A. S. (2001) Enzyme-assisted extraction of antioxidative phenols from black current juice press residues (Ribes nigrum). Journal of Agricultural and Food Chem., 49(7): 3169–3177.
  • Pinelo, M.; Zornoza, B.; Meyer, A. S. (2008) Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Pur. Technol, 63(3): 620–627.
  • Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S. R.; Cagnasso, E.; Gerbi, V. (2012) Assessment of physicochemical differences in nebbiolo grape berries from different production areas and sorted by flotation. Am. J. Enol. Vitic., 63(2): 195–204.
  • Tseng, A.; Zhao, Y. (2012) Effect of different dying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). J. Food Sci., 79(9): H192–201.
  • Dean, J. A. (ed.) (1999) Buffer solutions other than standards. In Lange’s Handbook of Chemistry; McGraw-Hill: New York, p 8.112.
  • Tomaz, I.; Maslov, L. (2015) Simultaneous determination of phenolic compounds in different matrices using phenyl-hexyl stationary phase. Food Anal. Met., ( In press), DOI:10.1007/s12161-015-0206-7
  • Nari, J.; Noat, G.; Ricard, J. (1991) Pectin methylesterase, metal-ions and plant cell-wall extension - hydrolysis of pectin by plant cell-wall pectin methylesterase. Biochem. J., 279: 343–350.
  • Skrede G., W. R. E. (2002) Flavonoids from berries and grapes in Shi J., M. G., Le Maguer M. (Ed.) Functional Foods: Biochemical and Processing Aspects; CRC Press: Boca Raton, FL.
  • Cacace, J. E.; Mazza, G. (2003) Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 59(4): 379–389.
  • Pinelo, M.; Sineiro, J.; Nunez, M. J. (2006) Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J. Food Eng., 77(1): 57–63.
  • Spigno, G.; Trarnelli, L.; De Faveri, D. M. (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 81(1): 200–208.
  • Bagger-Jorgensen, R.; Meyer, A. S. (2004) Effects of different enzymatic pre-press maceration treatments on the release of phenols into blackcurrant juice. Eur. Food Res. Technol., 219(6): 620–629.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965–977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.