282
Views
1
CrossRef citations to date
0
Altmetric
Ultrafiltration

Hybrid sorbent-ultrafiltration systems for fluoride removal from water

&
Pages 348-358 | Received 18 Feb 2015, Accepted 09 Sep 2015, Published online: 06 Jan 2016

References

  • WHO (1970) Fluorides and human health. In Monograph Series 59, World Health Organization: Geneva.
  • WHO (2008) Guidelines for Drinking-Water Quality, World Health Organization: Geneva.
  • Vithanage, M.; Bhattacharya, P. (2015) Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemistry Letters, 13(2): 131–147.
  • Mondal, P.; George, S. (2015) A review on adsorbents used for defluoridation of drinking water. Reviews in Environmental Science and Bio/Technology, 14(2): 195–210.
  • Edmunds, M; Smedley, P. (2005) Fluoride in natural waters. In Essentials of Medical Geology; Selinus, O; Alloway, B. J., Eds.; Academic Press: London, pp. 301–329.
  • Bhatnagar, A.; Kumar, E; Sillanpää, M. (2012) Fluoride removal from water by adsorption-A review. Chemical Engineering Journal, 171(3): 811–840.
  • Mohapatra, M.; Anand, S.; Mishra, B. K.; Giles, D. E; Singh, P. (2009) Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1): 67–77.
  • Ayoob, S.; Gupta, A. K; Bhat, V. T. (2008) A conceptual overview on sustainable technologies for the defluoridation of drinking water. Critical Reviews in Environmental Science and Technology, 38(6): 401–470.
  • Craig, L.; Stillings, L. L.; Decker, D. L; Thomas, J. M. (2015) Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana. Applied Geochemistry, 56: 50–66.
  • Maiti, A.; Basu, J. K; De, S. (2011) Chemical treated laterite as promising fluoride adsorbent for aqueous system and kinetic modeling. Desalination, 265(265): 28–36.
  • Sarkar, A. R.; Goswami, J. L.; Banerjee, A.; Pramanick, P. P; Sarkar, M. (2004) Laterite as filter media for reducing some priority inorganic contaminants in water. Annu. Set Environ. Prot., 6: 9–18.
  • Sarkar, M.; Banerjee, A.; Pramanick, P. P; Sarkar, A. R. (2007) Design and operation of fixed bed laterite column for the removal of fluoride from water. Chemical Engineering Journal, 131(1-3): 329–335.
  • Sujana, M. G.; Pradhan, H. K; Anand, S. (2009) Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 161(1): 120–125.
  • Vithanage, M.; Jayarathna, L.; Rajapaksha, A. U.; Dissanayake, C. B.; Bootharaju, M. S; Pradeep, T. (2012) Modeling sorption of fluoride on to iron rich laterite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398: 69–75.
  • Kaseva, M. E. (2006) Optimization of regenerated bone char for fluoride removal in drinking water: A case study in Tanzania. Journal of Water and Health:, 4(1): 139–147.
  • Medellin-Castillo, N. A.; Leyva-Ramos, R.; Ocampo-Perez, R.; Garcia de la Cruz, R. F.; Aragon-Piña, A.; Martinez-Rosales, J. M.; Guerrero-Coronado, R. M; Fuentes-Rubio, L. (2007) Adsorption of fluoride from water solution on bone char. Industrial & Engineering Chemistry Research, 46(26): 9205–9212.
  • Mjengera, H; Mkongo, G. (2003) Appropriate deflouridation technology for use in flourotic areas in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 28(20-27): 1097–1104.
  • Mwaniki, D. L. (1992) Fluoride sorption characteristics of different grades of bone charcoal, based on batch tests. Journal of Dental Research, 71(6): 1310–1315.
  • Tardy, Y. (1997) Petrology Laterites & Tropical Soils; Taylor & Francis: Paris.
  • Arrenberg, A. (2010) Production Models for Bone Char Defluoridation; Naivsha, Kenya, Cranfield University.
  • Brunson, L. R; Sabatini, D. A. (2014) Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley. Science of The Total Environment, 488–489: 580-587.
  • Maiti, A.; Basu, J. K; De, S. (2012) Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal, 191: 1–12.
  • Tor, A.; Danaoglu, N.; Arslan, G; Cengeloglu, Y. (2009) Removal of fluoride from water by using granular red mud: Batch and column studies. Journal of Hazardous Materials, 164(1): 271–278.
  • Yan, R.; Liang, D. T.; Tsen, L.; Wong, Y.P; Lee, Y.K. (2004) Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel, 83(17–18): 2401–2409.
  • Jawor, A; Hoek, E. M. V. (2010) Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration. Environmental Science & Technology, 44(7): 2570–2576.
  • Katsou, E.; Malamis, S; Haralambous, K. J. (2011) Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 82(4): 557–564.
  • Kuncoro, E. P.; Roussy, J; Guibal, E. (2005) Mercury recovery by polymer‐enhanced ultrafiltration: Comparison of chitosan and poly(ethylenimine) used as macroligand. Separation Science and Technology, 40(1-3): 659–684.
  • Pookrod, P.; Haller, K. J; Scamehorn, J. F. (2005) Removal of arsenic anions from water using polyelectrolyte‐enhanced ultrafiltration. Separation Science and Technology, 39(4): 811–831.
  • Koltuniewicz, A. B.; Witek, A; Bezak, K. (2004) Efficiency of membrane-sorption integrated processes. Journal of Membrane Science, 239(1): 129–141.
  • Churchouse, S; Wildgoose, D. (1999) Membrane bioreactors progress from the laboratory to full-scale use. Membrane Technology, 1999(111): 4–8.
  • Davey, J; Schäfer, A. I. (2009) Ultrafiltration to Supply Drinking Water in International Development: A Review of Opportunities, in Appropriate Technologies for Environmental Protection in the Developing World, Yanful, E., Ed.; Springer: Amsterdam, pp. 151–168.
  • Peter, M. (2010) Ultra-low Pressure Ultrafiltration for Decentralized Drinking Water Treatment, ETH: Zurich.
  • Mulder, M. (1996) Basic Principles of Membrane Technology. Wolters Kluwer: Dordrecht.
  • Wang, Y; Reardon, E. J. (2001) Activation and regeneration of a soil sorbent for defluoridation of drinking water. Applied Geochemistry, 16(5): 531–539.
  • Norrish, K; Hutton, J. T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta, 33: 431–453.
  • Worch, E. (1993) A new equation for the calculation of diffusion coefficients for dissolved substances (Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe). Vom Wasser, 81: 289–297.
  • Crittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J; Tchobanoglous, G. (2005) Water Treatment: Principles and Design. Wiley: New Jersey.
  • Partey, F.; Norman, D.; Ndur, S; Nartey, R. (2008) Arsenic sorption onto laterite iron concretions: Temperature effect. Journal of Colloid and Interface Science, 321(2): 493–500.
  • Osei, J.; Gawu, S. K. Y.; Schäfer, A. I.; Atipoka, F. A; Momade, F. W. Y. (2015) Impact of laterite characteristics on fluoride removal from water. Journal of Chemical Technology & Biotechnology doi:10.1002/jctb.4656
  • Jahan, N.; Guan, H; Bestland, E. (2011) Arsenic remediation by Australian laterites. Environmental Earth Sciences, 64(1): 247–253.
  • Cheung, C. W.; Porter, J. F; McKay, G. (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir, 18(3): 650–656.
  • Wilson, J. A.; Pulford, I. D; Thomas, S. (2003) Sorption of Cu and Zn by bone charcoal. Environmental Geochemistry and Health, 25(1): 51–56.
  • Larsen, M. J.; Pearce, E. I. F; Ravnholt, G. (1994) The effectiveness of bone char in the defluoridation of water in relation to its crystallinity, carbon content and dissolution pattern. Archives of Oral Biology, 39(9): 807–816.
  • Rojas-Mayorga, C. K.; Silvestre-Albero, J.; Aguayo-Villarreal, I. A.; Mendoza-Castillo, D. I; Bonilla-Petriciolet, A. (2015) A new synthesis route for bone chars using CO2 atmosphere and their application as fluoride adsorbents. Microporous and Mesoporous Materials, 209(0): 38–44.
  • Medellin-Castillo, N. A.; Leyva-Ramos, R.; Padilla-Ortega, E.; Perez, R. O.; Flores-Cano, J. V; Berber-Mendoza, M. S. (2014) Adsorption capacity of bone char for removing fluoride from water solution: Role of hydroxyapatite content, adsorption mechanism and competing anions. Journal of Industrial and Engineering Chemistry, 20(6): 4014–4021.
  • Calace, N.; Nardi, E.; Petronio, B. M; Pietroletti, M. (2002) Adsorption of phenols by papermill sludges. Environmental Pollution, 118(3): 315–319.
  • Neuman, W. F.; Neuman, M. W.; Main, E. R.; O’Leary, J; Smith, F. A. (1950) The surface chemistry of bone. II. Fluoride deposition. The Journal of Biological Chemistry, 187(2): 655–661.
  • Dissanayake, C. B; Chandrajith, R. (2009) Introduction to Medical Geology: Focus on Tropical Environments. Springer: New Jersey.
  • Fan, X.; Parker, D. J; Smith, M. D. (2003) Adsorption kinetics of fluoride on low cost materials. Water Research, 37(20): 4929–4937.
  • Kawasaki, N.; Ogata, F.; Tominaga, H; Yamaguchi, I. (2009) Removal of fluoride ion by bone char produced from animal biomass. Journal of Oleo Science, 58(10): 529–535.
  • Albertus, J.; Bregnhøj, H; Kongpun, M. Bone char quality and defluoridation capacity in contact precipitation. In 3rd International Workshop on Fluorosis Prevention and Elucidation of Water. 2000. Chiang Mai, Thailand: ISFR, EnDeCo, ICOH.
  • Spinelli, M. A.; Brudevold, F; Moreno, E. (1971) Mechanism of fluoride uptake by hydroxyapatite. Archives of Oral Biology, 16(2): 187–203.
  • Palecek, S. P; Zydney, A. L. (1994) Hydraulic permeability of protein deposits formed during microfiltration: effect of solution pH and ionic strength. Journal of Membrane Science, 95(1): 71–81.
  • Brady, J; Holum, J. (1996) Chemistry: The Study of Matter and Its Changes. John Wiley & Sons, Inc.: Canada. 953.
  • Cohen, R. D; Probstein, R. F. (1986) Colloidal fouling of reverse osmosis membranes. Journal of Colloid and Interface Science, 114(1): 194–207.
  • Kraemer, S. (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Sciences - Research Across Boundaries, 66(1): 3–18.
  • Fischer. III. Preparation Procedures for Specific Iron Hydroxide and Oxide Compounds. 2003 25 May 2013]; Available from: http://www.fischer-tropsch.org/DOE/DOE_reports/90056/90056_t15/de96005561_sec03_01_24.pdf.
  • Cheryan, M. (1998) Ultrafiltration and Microfiltration handbook. CRC Press: New York.
  • Leyva-Ramos, R.; Rivera-Utrilla, J.; Medellin-Castillo, N. A; Sanchez-Polo, M. (2010) Kinetic modeling of fluoride adsorption from aqueous solution onto bone char. Chemical Engineering Journal, 158(3): 458–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.