283
Views
13
CrossRef citations to date
0
Altmetric
Extraction

Supercritical CO2 extraction of triterpenes from rosemary leaves: Kinetics and modelling

, , &
Pages 2174-2182 | Received 15 Sep 2015, Accepted 14 Jun 2016, Published online: 05 Aug 2016

References

  • Soldi, C.; Pizzolatti, M.G.; Luiz, A.P.; Marcon, R.; Meotti, F.C.; Mioto, L.A.; Santos, A.R.S. (2008) Synthetic derivatives of the α-and β-amyrin triterpenes and their antinociceptive properties. Bioorganic & Medicinal Chemistry, 16: 3377–3386.
  • Aragão, G.F.; Pinheiro, M.C.; Nogueira Bandeira, P.; Gomes Lemos, T.L.; de Barros Viana G.S. (2007) Analgesic and anti-inflammatory activities of the isomeric mixture of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.). Journal of Herbal Pharmacotherapy, 7: 31–47.
  • Wu, C.; Hseu, Y.; Lien, J.; Lin, L.; Lin, Y.; Ching, H. (2011) Triterpenoid contents and anti-Inflammatory properties of the methanol extracts of Ligustrum species leaves. Molecules Journal, 16: 1–15.
  • El-Hagrassi, A.M.; Ali, M.M.; Osman, A.F.; Shaaban, M. (2011) Phytochemical investigation and biological studies of Bombax malabaricum flowers. Natural Products Research, 25: 141–151.
  • Jabeen, K.; Javaid, A.; Ahmad, E.; Athar, M. (2011) Antifungal compounds from Melia azederach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Natural Products Research, 25: 264–276.
  • Michel Otuki, F.; Ferreira, J.; Lima, F.V.; Meyre-Silva, C.; Malheiros, A.; Muller, L.A.; Cani, G.S.; Santos, A.R.S.; Yunes, R.A.; Calixto, J.B. (2005) Antinociceptive properties of mixture of α-Amyrin and β-Amyrin triterpenes: Evidence for participation of protein kinase C and protein kinase a pathways. Journal of Pharmacology and Experimental Therapeutics, 313: 310–318.
  • Oliveira, F.A.; Lima-Junior, R.C., Cordeiro, W.M.; Vieira-Junior, G.M., Chaves, M.H.; Almeida, F.R.; Silva, R.M.; Santos, F.A.; Rao, V.S. (2004) Pentacyclic triterpenoids, α, β-amyrins, suppress the scratching behavior in a mouse model of pruritus and Pharmacology. Biochemistry and Behavior, 78: 719–725.
  • Simão da Silva, K.A.B.; Paszcuk, A.F.; Passos, G.F.; Silva E.S.; Bento, A.F.; Meotti, F.C.; Calixto, J.B. (2011) Activation of cannabinoid receptors by the pentacyclic triterpene alpha,beta-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain, 152: 1872–1887.
  • Hernandez-Vázquez, L.; Mangas, S.; Palazón, J.; Navarro-Ocaña, A. (2010) Valuable medicinal plants and resins: Commercial phytochemicals with bioactive properties. Industrial Crops and Products, 31: 476–480.
  • Chicca, A.; Marazzi, J.; Gertsch, J. (2012) The antinociceptive triterpene beta-amyrin inhibits 2-arachidonoyl glycerol (2-AG) hydrolysis without directly targeting CB receptors. British Journal of Pharmacology, 1671: 596–1608.
  • Matos, I.; Bento, A.F.; Marcon, R.; Claudino, R.F.; João Calixto, B. (2013) Preventive and therapeutic oral administration of the pentacyclic triterpene amyrin ameliorates dextran sulfate sodium induced colitis in mice the relevance of cannabinoid system. Molecular Immunology, 54: 482–492.
  • Sendra, J.; Seidl, O.; Miedzobrodzka, J.; Zieba, J. (1969) Chromatographic analysis of flavonoids and triterpenes in folium Rosmarini. Dissert Pharmacy Pharmacology, 21: 185–191.
  • Qunfang, Z.; Zhanhui, X.; Pengfei, T.; Gansun, L.; Hongming, C. (2000) A New Triterpene from Rosemary (Rosmarinus officinalis). Journal of Chinese Pharmaceutical Sciences, 9: 131–136.
  • European Food Safety Authority (EFSA). (2008) Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food on a request from the Commission on the use of rosemary extracts as a food additive. The European Food Safety Authority Journal, 72: 11–29.
  • Razborsek, M.I.; Voncina,; D.B.; Dolecek, V.; Voncina, E. (2008) Determination of oleanolic, betulinic and ursolic acid in Lamiaceae and mass spectral fragmentation of their trimethyl silylated derivatives. Chromatographia, 67: 433–440.
  • Razboršek, M.I.; Vončina, D.B.; Doleček, V.; Vončina, E. (2007) Determination of Major Phenolic Acids, Phenolic Diterpenes and Triterpenes in Rosemary (Rosmarinus officinalis L.) by Gas Chromatography and Mass Spectrometry. Acta Chimica Slovenica, 54: 60–67.
  • Ganeva, Y.; Tsankova, E.; Simova, S.; Apostolova. B.; Zaharieva Rofficerone, E. (1993) A new triterpenoid from Rosmarinus officinalis. Planta Medica, 59: 276–277.
  • Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. (2013) Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chemistry, 136: 120–129.
  • Zhang, Y.; Adelakun, T.A.; Qub, L.; Li, X.; Li, J.; Han, L.; Wang, T. (2014) New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts. Fitoterapia, 99: 78–85.
  • Chang, C.H.; Chyau, C.C.; Hsieh, C.L.; Wu, Y.Y.; Ker, Y.B.; Tsen, H.Y.; Peng, R.Y. (2008) Relevance of phenolic diterpene constituents to antioxidant activity of supercritical CO2 extract from the leaves of rosemary. Natural Products Research, 22: 76–90.
  • Visentín, A.; Cismondi, M.; Maestri, D. (2011) Supercritical CO2 fractionation of rosemary ethanolic oleoresins as a method to improve carnosic acid recovery. Innovative Food Science and Emerging Technologies, 12: 142–145.
  • Celiktas, O.Y.; Bedir, E.; Vardar Sukan, F. (2007) In vitro antioxidant activities of Rosmarinus officinalis extracts treated with supercritical carbon dioxide. Food Chemistry, 101: 1457–1464.
  • Vicente, G.; García-Risco, M.R.; Fornari, T.; Reglero, G. (2012) Supercritical fractionation of rosemary extracts to improve the antioxidant activity. Chemical Engineering & Technology, 35: 176–182.
  • Vicente, G.; Molina, S.; González-Vallinas, M.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. (2013) Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. Journal of Supercritical Fluids, 79: 101–108.
  • Ivanovic, J.; Djilas, S.; Jadranin, M.; Vajs, V;. Babovic, N.; Petrovic, S.; Žižović, I. (2009) Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L.) and Sage (Salvia officinalis L.). Journal of Serbian Chemical Society, 74: 717–732.
  • Nguyen, U.; Frankman, G.; Evans, D.A. (1991) Process for extracting antioxidants from Labiatae herbs, US patents 5, 017,397.
  • Reverchon, E.; Taddeo, R. (1995) Extraction of sage oil by supercritical CO2: influence of some process parameters. Journal of Supercritical Fluids, 8: 302–309.
  • Ghonasgi, D.; Gupta, S.; Dooley, K.M.; Knop, F.C. (1991) Measurement and modeling of supercritical carbon dioxide extraction of phenol from water. Journal of Supercritical Fluids, 4: 53–59.
  • Naik, S.N.; Lentz, H.; Maheshawari, R.C. (1989) Extraction of perfumes and flavours from plant materials with liquid carbon dioxide under liquid–vapour equilibrium conditions. Fluid Phase Equilibria, 49: 115–126.
  • Spiro, M.; Kandiah, M. (1990) Extraction of ginger rhizome: partition constants and other equilibrium properties in organic solvents and in supercritical carbon dioxide. International Journal of Food Science and Technology, 25: 566–575.
  • Reverchon, E.; Donsi, G.; Osseo, L.S. (1993) Modeling of supercritical fluid extraction from herbaceous matrices. International Journal of Food Sciences and Technology, 32: 2721–2726.
  • Goto, M.; Roy, B.C.; Hirose, T. (1996) Shrinking-core leaching model for supercritical fluid extraction. Journal of Supercritical Fluids, 9: 128–133.
  • Sovova, H. (1994) Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chemical Engineering Science, 49: 409–414.
  • Sovová, H. (2012) Steps of supercritical fluid extraction of natural products and their characteristic times. Journal of Supercritical Fluids, 66: 73–79.
  • Povh, N.P.; Marques, M.O.M.; Meireles, M.A.A. (2001) Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert). Journal of Supercritical Fluids, 21: 245–256
  • Bensebia, O.; Barth, D.; Bensebia, B.; Dahmani, A. (2009) Supercritical CO2 extraction of rosemary: Effect of extraction parameters and modelling. Journal of Supercritical Fluids, 49: 161–166.
  • Adams, R.P. (2007) Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry, 4th Ed.; Allured Publishing, Carol Stream, Illinois.
  • Almela, L.; Sánchez-Muňoz, B.; Fernández-Lόpez, J.A.; Roca, M.J.; Rabe, V. (2006) Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Journal of Chromatography A, 1120: 221–229.
  • Mongkholkhajornsilp, D.; Doulas, S.; Douglas, P.L.; Elkamel, A.; Teppaitoon, W.; Pongamphai, S. (2005) Supercritical CO2 extraction of nimbin from neem seeds: a modeling study. Journal of Food Engineering, 71: 331–340.
  • Sun, C.K.; Chen, H. (1986) Tracer diffusion in dense ethanol: a generalized correlation for nonpolar and hydrogen-bonded solvents. American Institute of Chemical Engineers Journal, 32: 1367–1371.
  • Joback, K.G.; Reid, R.C (1987) Estimation of pure-component properties from group-contributions. Chemical Engineering Communications, 57: 233–243.
  • Wakao, N.; Smith, J.M (1962) Diffusion in catalyst pellets. Chemical Engineering Science, 17: 825–834.
  • Van Deemter, J.J.; Zuiderweg, F.J.; Klinkenberg, A.; (1956) Longitudinal diffusion and resistance to mass transfer as causes of non ideality in chromatography. Chemical Engineering Science, 5: 271–280.
  • Ruthven, D.M. (1984) Principles of Adsorption and Adsorption Processes; Wiley (ed), U.S.A.
  • Funazukuri, T.; Kong, C.; Kagei, S. (1998) Effective axial dispersion coefficients in packed beds under supercritical conditions. Journal of Supercritical Fluids, 13: 169–175.
  • Martínez, J., Monteiro, A.R., Rosa, P.T.V., Marques, M.O.M., Meireles, M.A.A. (2003) Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Industrial and Engineering Chemical Research, 42: 1057–1063.
  • Tan, C., Liou, D. (1989) Modeling of desorption at supercritical conditions. American Institute of Chemical Engineers Journal, 35: 1029–1031.
  • Thorsen, M.A.; Hildebrandt, K.S. (2003) Quantitative determination of phenolic diterpenes in rosemary extracts-aspects of accurate quantification. Journal Chromatography A, 995: 119–125.
  • Glisic, S.; Ivanovica, J.; Ristic, M.; Skalaa, D. (2010) Extraction of sage (Salvia officinalis L.) by supercritical CO2: Kinetic data, chemical composition and selectivity of diterpenes. Journal of Supercritical Fluids, 52: 62–70.
  • Ramírez, P.; García-Risco, M.R.; Santoyo, S.; Javier Señoráns, F.; Ibáñez, E.; Reglero, G. (2006) Isolation of functional ingredients from rosemary by preparative-supercritical fluid chromatography (Prep-SFC). Journal of Pharmaceutical and Biomedical Analysis, 41: 1606–1613.
  • Genena, A.K.; Hense, H.; Smânia Junior, A.; Machado de Souza, S. (2008) Rosemary (Rosmarinus officinalis) – a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciência Tecnologia Alimentos Campinas, 28: 463–469.
  • Fornari, T.; Ruiz-Rodriguez, A.; Vicente, G.; Vazquez, E.; Garcia-Risco, M.R.; Reglero, G. (2012) Kinetic study of the supercritical CO2 extraction of different plants from Lamiaceae family. Journal of Supercritical Fluids, 64: 1–8.
  • Zizovic, I.; Stamenic´, M.; Orlovic´, A.; Skala, D. (2005) Supercritical carbon dioxide essential oil extraction of Lamiaceae family species: Mathematical modelling on the micro-scale and process optimization. Chemical Engineering Science, 60: 6747–6756.
  • Stamenic´, M. Zizovic, I. Orlovic´, A. Skala, D. (2008) Mathematical modelling of essential SFE on the micro-scale. Classification of plant material. Journal of Supercritical Fluids, 46: 285–292.
  • Mónica García-Risco, R.; Elvis Hernández, J.; Vicente, G.; Fornari, T.; Francisco Sênoráns, J. Reglero, G. (2011) Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves. Journal of Supercritical Fluids, 55: 971–976.
  • Coelho, J.A.P.; Mendes, R.L. Provost, M.C. Cabral, J.M.S. Novais, J.M.; Palavra, A.M.F. (1997) Supercritical carbon dioxide extraction of volatile compounds from rosemary. In: Abraham MA, Sunol AK (eds) Supercritical fluids. Extraction and pollution prevention. American Chemical Society, Washington, DC, 101–109.
  • Carvalho Jr. R.N.; Moura, L.S.; Rosa, P.T.V.; Meireles, M.A.A. (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. Journal of Supercritical Fluids, 35: 197–204.
  • Marrone, C.; Poletto, M.; Reverchon, E.; Stassi, A. (1998) Almond oil extraction by supercritical CO2: Experiments and modelling. Chemical Engineering Science, 53: 3711–3718.
  • del Valle, J.M.; de la Fuente, J.C.; Uquiche, E.; Zetzl, C.; Brunner, G. (2011) Mass transfer and equilibrium parameters on high-pressure CO2 extraction of plant essential oils. In: J.M. Aguilera et al. (Eds). Food Engineering Interfaces. Springer Science & Business Media.
  • Martínez, J., Rosa, P.T.V.; Menut, C.; Leydet, A.; Brat, P.; Pallet, D.; Meireles, M.A.A. (2004) Valorization of brazilian vetiver (Vetiveria zizanioides (L.) Nash ex Small) oil. Journal of Agricultural and Food Chemistry, 52: 6578–6584.
  • Rui Domingues, M.A.; Marcelo de Melo, M.R.; Neto Carlos, P.; Silvestre Armando, J.D.; Silva, C.M. (2012) Measurement and modeling of supercritical fluid extraction curves of Eucalyptus globulus bark: Influence of the operating conditions upon yields and extract composition. Journal of Supercritical Fluids, 72: 176–185.
  • Kitzberger, C.S.G.; Lomonaco, R.H.; Michielin, E.M.Z.; Danielski, L., Correia, J.; Ferreira, S.R.S. (2009) Supercritical fluid extraction of shiitake oil: curve modeling and extract composition. Journal of Food Engineering, 90: 35–43.
  • Mezzomo, N.; Martínez, J.; Ferreira, S.R.S. (2009) Supercritical fluid extraction of peach (Prunuspersica) almond oil: kinetics, mathematical modeling and scale-up. Journal of Supercritical Fluids, 51: 10–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.