246
Views
6
CrossRef citations to date
0
Altmetric
Adsorption

A hybrid equation of state and Kent-Eisenberg model for accurate prediction of carbon dioxide separation by aqueous alkanolamines

, &
Pages 2744-2755 | Received 08 Oct 2015, Accepted 22 Jul 2016, Published online: 14 Sep 2016

References

  • Markusson, N. (2012) The social dynamics of carbon capture and storage: understanding CCS representations, governance and innovation; Routledge: London.
  • Chávez, R.-H.; Guadarrama, J.; Klapp, J. (2007) CO2 capture for atmosphere pollution reduction in Klapp, J., Cervantes-Cota, J., Chávez Alcalá, J. (Eds) Towards a Cleaner Planet; Springer Berlin Heidelberg.
  • Aaron, D.; Tsouris, C. (2005) Separation of CO2 from flue gas: a review. Separation Science and Technology, 40 (1–3): 321–348.
  • Puxty, G.; Rowland, R.; Allport, A.; Yang, Q.; Bown, M.; Burns, R.; Maeder, M.; Attalla, M. (2009) Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environmental Science & Technology, 43 (16): 6427–6433.
  • Kontogeorgis, G.M.; Folas, G.K. (2010) Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories; Wiley: Chichester, UK.
  • Polishuk, I.; Stateva, R.P.; Wisniak, J.; Segura, H. (2002) Prediction of high pressure phase equilibria using cubic EOS: what can be learned? The Canadian Journal of Chemical Engineering, 80(5): 927–942.
  • Puxty, G.; Maeder, M. (2013) A simple chemical model to represent CO2–amine–H2O vapour–liquid-equilibria. International Journal of Greenhouse Gas Control, 17: 215–224.
  • Zoghi, A.T.; Feyzi, F.; Dehghani, M.R. (2012) Modeling CO2 Solubility in aqueous n-methyldiethanolamine solution by electrolyte modified peng–robinson plus association equation of state. Industrial & Engineering Chemistry Research, 51 (29): 9875–9885.
  • Suleman, H.; Maulud, A.S.; Man, Z., (2015) Review and selection criteria of classical thermodynamic models for acid gas absorption in aqueous alkanolamines. Reviews in Chemical Engineering, 31 (6): 599–639.
  • Kontogeorgis, G.M.; Economou, I.G. (2010) Equations of state: From the ideas of van der Waals to association theories. The Journal of Supercritical Fluids, 55 (2): 421–437.
  • Kent, R.L.; Eisenberg, B. (1976) Better data for amine treating. Hydrocarbon Processing, 55 (2): 87–90.
  • Jou, F.Y.; Mather, A.E.; Otto, F.D. (1982) Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Industrial & Engineering Chemistry Process Design and Development, 21 (4): 539–544.
  • Hu, W.; Chakma, A. (1990) Modelling of equilibrium solubility of CO2 and H2S in aqueous amino methyl propanol (AMP) solutions. Chemical Engineering Communications, 94 (1): 53–61.
  • Hu, W.; Chakma, A. (1990) Modelling of equilibrium solubility of CO2 and H2S in aqueous diglycolamine (DGA) solutions. The Canadian Journal of Chemical Engineering, 68 (3): 523–525.
  • Li, M.-H.; Shen, K.-P. (1993) Calculation of equilibrium solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Fluid Phase Equilibria, 85: 129–140.
  • Haji-Sulaiman, M.; Aroua, M.; Benamor, A. (1998) Analysis of equilibrium data of CO2 in aqueous solutions of diethanolamine (DEA), Methyldiethanolamine (MDEA) and their mixtures using the modified Kent–Eisenberg model. Chemical Engineering Research and Design, 76 (8): 961–968.
  • Abu-Arabi, M.K.; Al-Muhtaseb, S.A. (2000) Modelling and prediction of the solubility of acid gases in diethanolamine solutions. High Temperatures High Pressures, 32 (3): 261–270.
  • Jahangiri, A.; Pahlavanzadeh, H.; Mohammadi, A. (2014) The modeling of CO2 removal from a gas mixture by 2-amino-2-methyl-1-propanol (AMP) Using the modified Kent–Eisenberg model. Petroleum Science and Technology, 32 (9): 1104–1113.
  • Shahid, M.Z.; Suleman, H.; Maulud, A.S.; Khalil, M.A.B.; Man, Z., Monitoring of Chemical Speciation of DEA–CO2–Water System by Raman Spectroscopy. In Advanced Materials Research, Trans Tech Publ: 2015; Vol. 1113, pp 358–363.
  • Suleman, H.; Shahid, M.Z.; Maulud, A.S.; Man, Z.; Khalil, M.A.B., Determination of chemical species in MDEA–Carbon Dioxide–Water system by raman spectroscopy. In Advanced Materials Research, Trans Tech Publ: 2015; Vol. 1113, pp 261–266.
  • Lee, J.I.; Otto, F.D.; Mather, A.E. (1976) Equilibrium between carbon dioxide and aqueous monoethanolamine solutions. Journal of Chemical Technology and Biotechnology, 26 (1): 541–549.
  • Solbraa, E., Equilibrium and non-equilibrium thermodynamics of natural gas processing. In Norwegian University of Science and Technology: Trondheim, 2002; p 53.
  • Zhang, Y.; Chen, C.-C. (2011) Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Industrial & Engineering Chemistry Research, 50 (1): 163–175.
  • Edwards, T.J.; Newman, J.; Prausnitz, J.M. (1975) Thermodynamics of aqueous solutions containing volatile weak electrolytes. AIChE Journal, 21 (2): 248–259.
  • Edwards, T.; Maurer, G.; Newman, J.; Prausnitz, J. (1978) Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE Journal, 24 (6): 966–976.
  • De Visscher, A.; Vanderdeelen, J.; Königsberger, E.; Churagulov, B.R.; Ichikuni, M.; Tsurumi, M. (2012) IUPAC-NIST solubility data series. 95. alkaline earth carbonates in aqueous systems. part 1. introduction, Be and Mg. Journal of Physical and Chemical Reference Data, 41 (1): 1–67.
  • De Visscher, A.; Conejo, M.S. (2013) Solubility phenomena related to CO2 capture and storage. Pure and Applied Chemistry, 85 (11): 2051–2058.
  • Chapoy, A.; Mohammadi, A.; Chareton, A.; Tohidi, B.; Richon, D. (2004) Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide-water system. Industrial & Engineering Chemistry Research, 43 (7): 1794–1802.
  • Valtz, A.; Chapoy, A.; Coquelet, C.; Paricaud, P.; Richon, D. (2004) Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilibria, 226: 333–344.
  • Kritpiphat, W.; Tontiwachwuthikul, P. (1996) New modified Kent–Eisenberg model for predicting carbon dioxide solubility in aqueous 2-amino-2-methyl-1-propanol (AMP) solutions. Chemical Engineering Communications, 144 (1): 73–83.
  • Aboudheir, A.; Tontiwachwuthikul, P.; Chakma, A.; Idem, R. (2003) Kinetics of the reactive absorption of carbon dioxide in high CO2 loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 58 (23): 5195–5210.
  • Haji-Sulaiman, M.; Aroua, M. (1995) Equilibrium of CO2 in aqueous diethanolamine (DEA) and amino methyl propanol (AMP) solutions. Chemical Engineering Communications, 140 (1): 157–171.
  • Suleman, H.; Nasir, Q.; Maulud, A.S.; Man, Z. (2015) Comparative study of electrolyte thermodynamic models for carbon dioxide solubility in water at high pressure. Chemical Engineering Transactions, 45: 589–594.
  • Boukouvalas, C.; Spiliotis, N.; Coutsikos, P.; Tzouvaras, N.; Tassios, D. (1994) Prediction of vapor-liquid equilibrium with the LCVM model: A linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC. Fluid Phase Equilibria, 92: 75–106.
  • Magoulas, K.; Tassios, D. (1990) Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilibria, 56: 119–140.
  • Fredenslund, A.; Jones, R.L.; Prausnitz, J.M. (1975) Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21 (6): 1086–1099.
  • Addicks, J.; Owren, G.A.; Fredheim, A.O.; Tangvik, K. (2002) Solubility of carbon dioxide and methane in aqueous methyldiethanolamine solutions. Journal of Chemical & Engineering Data, 47 (4): 855–860.
  • Bamberger, A.; Sieder, G.; Maurer, G. (2000) High-pressure (vapor+ liquid) equilibrium in binary mixtures of (carbon dioxide+ water or acetic acid) at temperatures from 313 to 353 K. The Journal of Supercritical Fluids, 17 (2): 97–110.
  • Cai, Z.; Wu, Z. (1996) Measurement and correlation of vapor–liquid equilibrium with CO2 systems at high pressure. Huahue Gongcheng/Chemical Engineering, 24: 71–73.
  • Campos, C.E.P.S.; Villardi, H.G.D.A.; Pessoa, F.L.P.; Uller, A.M.C. (2009) Solubility of carbon dioxide in water and hexadecane: experimental measurement and thermodynamic modeling. Journal of Chemical & Engineering Data, 54 (10): 2881–2886.
  • Dalmolin, I.; Skovroinski, E.; Biasi, A.; Corazza, M.; Dariva, C.; Oliveira, J.V. (2006) Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water. Fluid Phase Equilibria, 245 (2): 193–200.
  • Han, X.; Yu, Z.; Qu, J.; Qi, T.; Guo, W.; Zhang, G. (2011) Measurement and correlation of solubility data for CO2 in NaHCO3 aqueous solution. Journal of Chemical & Engineering Data, 56 (4): 1213–1219.
  • Houghton, G.; McLean, A.; Ritchie, P. (1957) Compressibility, fugacity, and water-solubility of carbon dioxide in the region 0–36 atm. and 0–100 C. Chemical Engineering Science, 6 (3): 132–137.
  • Lucile, F.; Cézac, P.; Contamine, F.; Serin, J.-P.; Houssin, D.; Arpentinier, P. (2012) Solubility of carbon dioxide in water and aqueous solution containing sodium hydroxide at temperatures from (293.15 to 393.15) K and Pressure up to 5 MPa: experimental measurements. Journal of Chemical & Engineering Data, 57 (3): 784–789.
  • Müller, G.; Bender, E.; Maurer, G. (1988) Das dampf-flüssigkeitsgleichgewicht des ternären systems ammoniak-kohlendioxid-wasser bei hohen wassergehalten im bereich zwischen 373 und 473 Kelvin. Berichte der Bunsengesellschaft für physikalische Chemie, 92 (2): 148–160.
  • Stewart, P.B.; Munjal, P.K. (1970) Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at −5°C to 25°C and 10 to 45 atm. pressure. Journal of Chemical & Engineering Data, 15 (1): 67–71.
  • Zawisza, A.; Malesinska, B. (1981) Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2–5 MPa and at temperatures up to 473 K. Journal of Chemical & Engineering Data, 26 (4): 388–391.
  • Sidi-Boumedine, R.; Horstmann, S.; Fischer, K.; Provost, E.; Fürst, W.; Gmehling, J. (2004) Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions. Fluid Phase Equilibria, 218 (1): 85–94.
  • Chakma, A.; Meisen, A. (1987) Solubility of carbon dioxide in aqueous methyldiethanolamine and N, N-bis (hydroxyethyl) piperazine solutions. Industrial & Engineering Chemistry Research, 26 (12): 2461–2466.
  • Dawodu, O.F.; Meisen, A. (1994) Solubility of carbon dioxide in aqueous mixtures of alkanolamines. Journal of Chemical & Engineering Data, 39 (3): 548–552.
  • Ma’mun, S.; Nilsen, R.; Svendsen, H.F.; Juliussen, O. (2005) Solubility of carbon dioxide in 30 mass% monoethanolamine and 50 mass% methyldiethanolamine solutions. Journal of Chemical & Engineering Data, 50 (2): 630–634.
  • Mathonat, C.; Majer, V.; Mather, A.; Grolier, J.-P. (1997) Enthalpies of absorption and solubility of CO2 in aqueous solutions of methyldiethanolamine. Fluid Phase Equilibria., 140 (1): 171–182.
  • Shen, K.P.; Li, M.H. (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Journal of Chemical & Engineering Data, 37 (1): 96–100.
  • Silkenbäumer, D.; Rumpf, B.; Lichtenthaler, R.N. (1998) Solubility of Carbon Dioxide in Aqueous Solutions of 2-Amino-2-methyl-1-propanol and N-Methyldiethanolamine and Their Mixtures in the Temperature Range from 313 to 353 K and Pressures up to 2.7 MPa. Industrial & Engineering Chemistry Research, 37 (8): 3133–3141.
  • Lee, J.I.; Otto, F.D.; Mather, A.E. (1972) Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures. Journal of Chemical & Engineering Data, 17 (4): 465–468.
  • Lee, J.; Otto, F.; Mather, A. (1974) The solubility of mixtures of carbon dioxide and hydrogen sulphide in aqueous Diethanolamine solutions. The Canadian Journal of Chemical Engineering, 52 (1): 125–127.
  • Dash, S.K.; Samanta, A.; Nath Samanta, A.; Bandyopadhyay, S.S. (2011) Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol solvent. Chemical Engineering Science, 66 (14): 3223–3233.
  • Tontiwachwuthikul, P.; Meisen, A.; Lim, C.J. (1991) Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. Journal of Chemical & Engineering Data, 36 (1): 130–133.
  • Jones, J.; Froning, H.; Claytor Jr, E. (1959) Solubility of acidic gases in aqueous monoethanolamine. Journal of Chemical & Engineering Data, 4 (1): 85–92.
  • Lawson, J.D.; Garst, A. (1976) Gas sweetening data: equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous monoethanolamine and aqueous diethanolamine solutions. Journal of Chemical & Engineering Data, 21 (1): 20–30.
  • Lee, J.I.; Otto, F.D.; Mather, A.E. (1976) The measurement and prediction of the solubility of mixtures of carbon dioxide and hydrogen sulphide in a 2.5 N monoethanolamine solution. The Canadian Journal of Chemical Engineering, 54 (3): 214–219.
  • Lee, J.; Otto, F.D.; Mather, A.E. (1974) The solubility of H2S and CO2 in aqueous monoethanolamine solutions. The Canadian Journal of Chemical Engineering, 52 (6): 803–805.
  • Lee, J.I.; Otto, F.D.; Mather, A.E. (1975) Solubility of mixtures of carbon dioxide and hydrogen sulfide in 5.0 N monoethanolamine solution. Journal of Chemical & Engineering Data, 20 (2): 161–163.
  • Shariff, A.M.; Murshid, G.; Lau, K.; Bustam, M.A.; Ahamd, F. (2011) Solubility of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol at high pressure. International Scholarly and Scientific Research & Innovation, 5 (12): 825–828.
  • Vallée, G.; Mougin, P.; Jullian, S.; Fürst, W. (1999) Representation of CO2 and H2S absorption by aqueous solutions of diethanolamine using an electrolyte equation of state. Industrial & Engineering Chemistry Research, 38 (9): 3473–3480.
  • Vrachnos, A.; Voutsas, E.; Magoulas, K.; Lygeros, A. (2004) Thermodynamics of acid gas-MDEA-water systems. Industrial & Engineering Chemistry Research, 43 (11): 2798–2804.
  • Al-Rashed, O.A.; Ali, S.H. (2012) Modeling the solubility of CO2 and H2S in DEA–MDEA alkanolamine solutions using the electrolyte–UNIQUAC model. Separation and Purification Technology, 94: 71–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.