363
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Tuning of the swelling and dye removal efficacy of poly(acrylamide-AMPS)-based smart hydrogel

, &
Pages 743-755 | Received 17 Feb 2016, Accepted 19 Oct 2016, Published online: 20 Dec 2016

References

  • Ahmad, A.; Mohd-Setapar, S.H.; Chuo, S.C.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances, 5: 30801–30818.
  • Wang, X.C.; Zhang, C.; Ma, X.; Luo, L. (2015) Water Cycle Management: A New Paradigm of Wastewater Reuse and Safety Control. Springer: Berlin.
  • Sharma, S.K. (2015) Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications. John Wiley & Sons.
  • Kasgoz, H.; Durmus, A. (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies, 19: 838–845.
  • Karadag, E.; Saraydin, D.; Cetinkaya, S.; Guven, O. (1996) In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials, 17(1): 67–70.
  • Isik, B.J. (2004) Swelling behavior and determination of diffusion characteristics of acrylamide-acrylic acid hydrogel. Journal of Applied Polymer Science, 91: 1289–1293.
  • Bajpai, S.K. (2001) Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. Journal of Applied Polymer Science, 80: 2782–2789.
  • Saraydin, D.; Karadag, E.; Güven, O. Polym. (1994) Acrylamide/maleic acid hydrogels. Polymers for Advanced Technologies, 6: 719–726.
  • Qiu, Y.; Park, K. (2001) Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53: 321–339.
  • Çaykara, T.; Doǧmuş, M.; Kantoǧlu, O. (2004) Network structure and swelling–shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels. Journal of Polymer Science Part B: Polymer Physics, 42: 2586–2594.
  • Li, W.; Zhao, H.; Teasdale, P.R.; John, R.; Zhang, S. (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. Reactive & Functional Polymers, 52: 31–41.
  • Cavus, S. (2010) Poly(methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels: Investigation of pH- and temperature-dependent swelling characteristics and their characterization. Journal of Polymer Science: Part B: Polymer Physics, 48: 2497–2508.
  • Travas-Sejdic, J.; Easteal, A.J. (2000) Equilibrium swelling of poly(AAm-co-AMPS) gels in surfactant solutions. Polymer, 41: 7451–7458.
  • Durmaz, S.; Okay, O. (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer, 41: 3693–3704.
  • Agnihotri, S.A.; Aminabhavi, T.M. (2006) Novel interpenetrating network chitosan-poly (ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. International Journal of Pharmaceutics, 324: 103–115.
  • Zhu, L.; Zhang, L.; Tang, Y.; Kou, X. (2014) Synthesis of sodium alginate graft poly (acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)/attapulgite hydrogel composite and the study of its adsorption. Polymer-Plastics Technology and Engineering, 53: 74–79.
  • Cavus, S.; Gurdag, G. (2009) Noncompetitive removal of heavy metal ions from aqueous solutions by poly [2-(acrylamido)-2-methyl-1-propanesulfonic acid-co-itaconic acid] hydrogel. Industrial & Engineering Chemistry Research, 48: 2652–2658.
  • Çavuş, S.; Gürdağ, G. (2008) Competitive heavy metal removal by poly (2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid‐co‐itaconic acid). Polymers for Advanced Technologies, 19: 1209–1217.
  • Hirashima, Y.; Sato, H.; Suzuki, A. (2005) ATR-FTIR Spectroscopic Study on Hydrogen Bonding of Poly(N-isopropylacrylamide-co-sodium acrylate) Gel. Macromolecules, 38: 9280–9286.
  • Khutoryanskaya, O.V.; Morrison, P.W.J.; Seilkhanov, S.K.; Mussin, M.N.; Ozhmukhametova, E.K.; Rakhypbekov, T.K.; Khutoryanskiy, V.V. (2014) Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin. Macromolecular Bioscience, 14: 225–234.
  • Lejardia, A.; Hernándeza, R.; Criadoa, M.; Santosc, J.I.; Etxeberriad, A.; Sarasuab, J.R.; Mijangos, C. (2014) Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties. Carbohydrate Polymers, 103: 267–273.
  • Hu, X.; Feng, L.; Xie, A.; Wei, W.; Wang, S.; Zhang, J.; Dong, W. (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. Journal of Materials Chemistry B, 2: 3646.
  • Scherzinger, C.; Schwarz, A.; Bardow, A.; Leonhard, K.; Richtering, W. (2014) Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Current Opinion in Colloid & Interface Science, 19 (2): 84–94.
  • Shirakura, T.; Kelson, T.J.; Ray, A.; Malyarenko, A.E.; Kopelman, R. (2014) Hydrogel Nanoparticles with Thermally Controlled Drug Release. ACS Macro Letters, 3: 602−606.
  • Pourjavadi, A.; Ghasemzadeh, H.; Mojahedi, F. (2009) Swelling properties of CMC‐g‐poly (AAm‐co‐AMPS) superabsorbent hydrogel. Journal of Applied Polymer Science; 113 (6): 3442–3449.
  • Yıldız, B.; Işık, B.; Kış, M. (2001) Synthesis of thermoresponsive N-isopropolylacrylamide-N-hydroxymethylacrylamide hydrogels by redox polymerization. Polymer, 42 (6): 2521–2529.
  • Dubey, S.; Bajpai, S.K. (2006) Poly(methacrylamide-co-acrylic acid) hydrogels for gastrointestinal delivery of theophylline: Part – I: swelling characterization. Journal of Applied Polymer Science, 101: 2995–3008.
  • Ritger, P.L.; Peppas, N.A. (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5: 23–36.
  • Kaith, B.S.; Jindal, R.; Mittal, H. (2010) Superabsorbent hydrogels from poly (acrylamide-co-acrylonitrile) grafted Gum ghatti with salt, pH and temperature responsive properties. Der Chemica Sinica, 1 (2): 92–103.
  • Karadağ, E.; Saraydin, D.; Güven, O. (1997) Cationic dye adsorption by acrylamide/itaconic acid hydrogels in aqueous solutions. Polymers for Advanced Technologies, 8: 574–578.
  • McKay, G.; Ho, Y.S. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34: 451–465.
  • Aydin, H.; Baysal, G. (2006) Adsorption of acid dyes in aqueous solutions by shells of bittim (Pistacia khinjuk Stocks). Desalination, 196: 248–259.
  • Arami, M.; Limaee, N.Y.; Mahmoodia, N.M.; Tabrizi, N.S. (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. The Journal of Hazardous Materials, 135 (1): 171–179.
  • Baskaralingam, P.; Pulikesi, M.; Ramamurthi, V.; Sivanesan, S. (2006) Equilibrium
  • studies for the adsorption of acid dye onto modified hectorite. Journal of Hazardous Materials, 136 (3): 989–992.
  • Dragan, E.S. (2014). Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 243, 572–590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.