346
Views
9
CrossRef citations to date
0
Altmetric
Adsorption

Green catalysts for Fenton-like oxidation of Procion Red MX-5B: Influence of the activation method and the reaction parameters on dye removal

, &
Pages 404-420 | Received 17 Feb 2016, Accepted 20 Oct 2016, Published online: 18 Dec 2016

References

  • Franciscon, E.; Grossman, M.J.; Paschoal, J.A.R.; Reyes, F.G.R.; Durrant, L.R. (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated. Brevibacterium sp. strain VN-15. SpringerPlus, 1 (1): 37.
  • Hua, L.; Ma, H.; Zhang, L. (2013) Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere, 90 (2): 143–149.
  • Idel-aouad, R.; Valiente, M.; Yaacoub, A.; Tanouti, B.; López-Mesas, M. (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186: 745–750.
  • Lacasse, K.; Baumann, W. (2004) Textile Chemicals: Environmental Data and Facts. Berlin, Heidelberg, Germany: Springer-Verlag.
  • Manganelli, S.; Benfenati, E.; Manganaro, A.; Kulkarni, S.; Barton-Maclaren, T.S.; Honma, M. (2015) New quantitative structure–activity relationship models improve predictability of Ames mutagenicity for aromatic azo compounds. Toxicological Sciences. doi: 10.1093/toxsci/kfw125
  • Rafii, F.; Hall, J.D.; Cerniglia, C.E. (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food and chemical Toxicology, 35 (9): 897–901.
  • Chung, K‐T. (2000) Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. Environmental carcinogenesis & Ecotoxicology reviews, 18 (1), 51–74.
  • Ghasemian, E.; Palizban, Z. (2016) Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. International Journal of Environmental Science and Technology, 13: 501–512.
  • Yang, C.; Li, L.; Shi, J.; Long, C.; Li, A. (2015) Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane. Journal of Hazardous Materials, 284: 50–57.
  • Bae, W.; Won, H.; Hwang, B.; Alves de Toledo, R.; Chung, J.; Kwon, K.; Shim, H. (2015) Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment. Journal of Hazardous Materials, 287: 421–428.
  • Verma, A.K.; Dash, R.R.; Bhunia, P. (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. The Journal of Environmental Management, 93 (1): 154–168.
  • Jonstrup, M.; Punzi, M.; Mattiasson, B. (2011) Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. Journal of Photochemistry and Photobiology A, 224 (1): 55–61.
  • Rey, A.; Faraldos, M.; Casas, J.A.; Zazo, J.A.; Bahamonde, A.; Rodriguez, J.J. (2009) Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Applied Catalysis B, 86 (1–2): 69–77.
  • Marugán, J.; López-Muñoz, M-J; van Grieken, R.; Aguado, J. (2007) Photocatalytic decolorization and mineralization of dyes with nanocrystalline TiO2/SiO2 materials. Industrial & Engineering Chemistry Research, 46 (23): 7605–7610.
  • Konstantinou, I.K.; Albanis, T.A. (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B, 49 (1): 1–14.
  • Bessegato, G.G.; Cardoso, J.C.; da Silva, B.F.; Zanoni, M.V.B. (2016) Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Applied Catalysis B, 180: 161–168.
  • Babu, S.G.; Vinoth, R.; Neppolian, B.; Dionysiou, D.D.; Ashokkumar, M. (2015) Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. Journal of Hazardous Materials, 291: 83–92.
  • Subash, B.; Krishnakumar, B.; Sobral, A.J.F.N.; Surya, C.; John, N.A.A.; Senthilraja, A.; Swaminathan, M.; Shanthi, M. (2016) Synthesis, characterization and daylight active photocatalyst with antiphotocorrosive property for detoxification of azo dyes. Separation and Purification Technology, 164: 170–181.
  • Senthilraja, A.; Krishnakumar, B.; Subash, B.; Sobral, A.J.F.N.; Swaminathan, M.; Shanthi, M. (2016) Sn loaded Au–ZnO photocatalyst for the degradation of AR 18 dye under UV-A light. Journal of Industrial and Engineering Chemistry, 33: 51–58.
  • Azami, M.; Bahrami, M.; Nouri, S.; Naseri, A. (2012) A central composite design for the optimization of the removal of the azo dye, methyl orange, from waste water using the Fenton reaction. Journal of the Serbian Chemical Society, 77 (2): 235–246.
  • Duarte, F.; Maldonado-Hodar, F.J.; Madeira, L.M. (2011) Influence of the characteristics of carbon materials on their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange II from aqueous solutions. Applied Catalysis B, 103: 109–115.
  • Wang, Y.; Zhao, H.; Gao, J.; Zhao, G.; Zhang, Y.; Zhang, Y. (2012) Mineralization of azo-dye wastewater by microwave synergistic electro-Fenton oxidation process. The Journal of Physical Chemistry, 116: 7457−7463.
  • Ramirez, J.H.; Maldonado-Hodar, F.J.; Perez-Cadenas, A.F.; Moreno-Castilla, C.; Costa, C.A.; Madeira, L.M. (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B, 75: 312–323.
  • Liu, S-Q.; Xiao, B.; Feng, L-R.; Zhou, S.-S.; Chen, Z.-G.; Liu, C.-B.; Chen, F.; Wu, Z.-Y.; Xu, N.; Oh, W.-C.; Meng, Z.-D. (2013) Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon, 64: 197–206.
  • Sun, L.; Yao, Y.; Wang, L.; Mao, Y.; Huang, Z.; Yao, D.; Lu, W.; Chen, W. (2014) Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst. Chemical Engineering Journal, 240: 413–419.
  • Wang, A.; Lia, Y-Y.; Estrada, A.L. (2011) Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Applied Catalysis B, 102 (3–4): 378–386.
  • Wang, L.; Yao, Y.; Zhang, Z. Sun, L.; Lu, W.; Chen, W.; Chen, H. (2014) Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chemical Engineering Journal, 251: 348–354.
  • Nowicki, P.; Pietrzak, R.; Wachowska, H. (2010) Sorption properties of active carbons obtained from walnut shells by chemical and physical activation. Catalysis Today, 150: 107–114.
  • Williams, P.T.; Reed, A.R. (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass & Bioenergy, 30 (2): 144–152.
  • Yang, J.; Qiu, K. (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165: 209–217.
  • Aworn, A.; Thiravetyan, P.; Nakbanpote, W. (2008) Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. Journal of Analytical and Applied Pyrolysis, 82: 279–285.
  • Joseph, G.C.; Zain, H.F.M.; Dek, S.F. (2006) Treatment of landfill leachate in Kayu Madang, Sabah: Textural and physical characterization (Part 1). The Malaysian Journal of Analytical Sciences, 10 (1): 1–6.
  • Kumar, P.S.; Ramalingam, S.; Sathishkumar, K. (2011) Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28 (1): 149–155.
  • Quintanilla, A.; Casas, J.A.; Mohedano, A.F.; Rodríguez, J.J. (2006) Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B, 67: 206–216.
  • Zabihi, M.; Asl, A.H.; Ahmadpour, A. (2010) Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. Journal of Hazardous Materials, 174: 251–256.
  • Orfao, J.J.M.; Silva, A.I.M.; Pereira, J.C.V.; Barata, S.A.; Fonseca, I.M.; Faria, P.C.C.; Pereira, M.F.R. (2006) Adsorption of a reactive dye on chemically modified activated carbons-influence of pH. The Journal of Colloid and Interface Science, 296: 480–489.
  • Türgay, O.; Ersöz, G.; Atalay, S.; Forss, J.; Welander, U. (2011) The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation And Purification Technology, 79: 26–33.
  • Wu, C-H.; Ng, H-Y. (2008) Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption, Journal of Hazardous Materials, 152: 120–127.
  • Almeida, E.J.R.; Corso, C.R. (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112: 317–322.
  • Nawanopparatsakul, S.; Phuagphong, P.; Kitcharoen, N. (2012) Effect of the citrus extractions on plant growth inhibition by lettuce (Lactuca sativa L) seed germination and seedling length bioassay. Journal of Pharmaceutical and Biomedical Sciences, 22 (25): 1–4.
  • Deng, H.; Yang, L.; Tao, G.; Dai, J. (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation: Application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials, 166: 1514–1521.
  • Ramakrishnan, K.; Namasivayam, C. (2011) Zinc chloride-activated jatropha husk carbon for removal of phenol from water by adsorption: Equilibrium and kinetic studies. Toxicological & Environmental Chemistry, 93 (6): 1111–1122.
  • Lua, A.C.; Yang, T. (2004) Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid and Interface Science, 274: 594–601.
  • Lowell, S.; Shields, J.E. (1991) Powder Surface Area and Porosity, 3rd Ed.; Chapman & Hall: London.
  • Jahangiri, M.; Shahtaheri, J.; Adl, J.; Rashidi, A.; Kakooei, H.; Forushani, A.R.; Nasiri, G.; Ghorbanali, A.; Ganjali, M.R. (2012) Preparation of activated carbon from walnut shell and its utilization for manufacturing organic-vapour respirator cartridge. Fresenius Environmental Bulletin, 21 (6a): 1508–1514.
  • Al-Degs, Y.; Barghouthi, E. (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77 (1): 16–23.
  • Gan, P.P.; Li, S.F.Y. (2013) Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chemical Engineering Journal, 229: 351–363.
  • Fu, F.; Wang, Q.; Tang, B. (2010) Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174: 17–22.
  • Daud, N.K.; Ahmad, M.A.; Hameed, B.H. (2010) Decolorization of Acid Red 1 dye solution by Fenton-like process using Fe–montmorillonite K10 catalyst. Chemical Engineering Journal, 165 (1): 111–116.
  • Ersöz, G. (2014) Fenton-like oxidation of Reactive Black 5 using rice husk ash based catalyst. Applied Catalysis B, 147: 353–358.
  • Sun, J-H.; Shi, S-H.; Lee, Y-F.; Sun, S.-P. (2009) Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution. Chemical Engineering Journal, 155 (3): 680–683.
  • Zorbas, V.; Kanungo, M.; Bains, S.A.; Mao, Y.; Hemraj-Benny, T.; Misewich, J.A.; Wong, S.S. (2005) Current-less photoreactivity catalyzed by functionalized AFM tips. Chemical Communications, 4598–4600.
  • Panda, N.; Sahoo, H.; Mohapatra, S. (2011) Decolourization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite. Journal of Hazardous Materials, 185: 359–365.
  • Ertugay, N.; Acar, F.N. (2013) Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, Article in Press (dx.doi. org/10.1016/j.arabjc.2013.02.009).
  • Vakili, M.; Rafatullah, M.; Gholami, Z.; Farraji, H. (2016) Treatment of reactive dyes from water and wastewater through chitosan and its derivatives. In. A.K. Mishra (Ed) Smart Materials for Waste Water Applications. Wiley, Scrivener Publishing.
  • Zollinger, H. (2003) Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments (3rd revised ed.); Verlag Helvetica Chimica Acta: Zürich.
  • Karataş, M.; Argun, Y.A.; Argun, M.E. (2012) Decolorization of antraquinonic dye, reactive blue 114 from synthetic wastewater by Fenton process: Kinetics and thermodynamics. Journal of Industrial and Engineering Chemistry, 18: 1058–1062.
  • Jiang, T.; Yang, Y.; Huang, Z.; Zhang, B.; Qiu, G. (2004) Leaching kinetics of pyrolusite from manganese–silver ores in the presence of hydrogen peroxide. Hydrometallurgy, 72: 129–138.
  • Adebayo, A.O.; Ipinmoroti, K.O.; Ajayi, O.O. (2003) Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid medium. Chemical and Biochemical Engineering Quarterly, 17 (3): 213–218.
  • Sun, J-H.; Sun, S-P.; Wang, G-L.; Qiao, L.-P. (2007) Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74: 647–652.
  • Bokare, A.D.; Choi, W. (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: 121–135.
  • Ramirez, J.H.; Vicente, M.A.; Madeira, L.M. (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment. Applied Catalysis B, 98: 10–26.
  • Pachhade, K.; Sandhya, S.; Swaminathan, K. (2009) Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions, Journal of Hazardous Materials, 167 (1–3): 313–318.
  • Monteagudo, J.M.; Duran, A.; Lopez-Almodovar, C. (2008) Homogeneous ferrioxalate-assisted solar photo-Fenton degradation of Orange II aqueous solutions. Applied Catalysis B, 83: 46–55.
  • Behnajady, M.A.; Modirshahla, N.; Ghanbary, F. (2007) A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148: 98–102.
  • Rache, M.L.; García, A.R.; Zea, H.R. Silva, A.M.T.; Madeira, L.M.; Ramírez, J.H. (2014) Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst: Kinetics with a model based on the Fermi’s equation. Applied Catalysis B, 146: 192–200.
  • Chang, M-W.; Chern, J-M. (2010) Decolorization of peach red azo dye, HF6 by Fenton reaction: Initial rate analysis. Journal of the Taiwan Institute of Chemical Engineers, 41: 221–228.
  • Dorraji, M.S.S.; Mirmohseni, A.; Carraro, M.; Gross, S.; Simone, S.; Tasselli, F.; Figoli, A. (2015) Fenton-like catalytic activity of wet-spun chitosan hollow fibers loaded with Fe3O4 nanoparticles: Batch and continuous flow investigations. Journal of Molecular Catalysis A: Chemical, 398: 353–357.
  • Huang, C.P.; Huang, Y.F.; Cheng, H.P.; Huang, Y.H. (2009) Kinetic study of an immobilized iron oxide for catalytic degradation of azo dye reactive black B with catalytic decomposition of hydrogen peroxide. Catalysis Communications, 10: 561–566.
  • Sun, J-H.; Sun, S-P.; Fan, M-H.; Guo, H.-Q.; Qiao, L.-P.; Sun, R.-X. (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials, 148 (1–2): 172–177.
  • Liou, M-J.; Lu, M-C. (2007) Catalytic degradation of nitroaromatic explosives with Fenton’s reagent. Journal of Molecular Catalysis A: Chemical, 277: 155–163.
  • Ramirez, J.H.; Duarte, F.M.; Martins, F.G.; Costa, C.A.; Madeira, L.M. (2009) Modelling of the synthetic dye Orange II degradation using Fenton’s reagent from batch to continuous reactor operation. Chemical Engineering Journal, 148: 394–404.
  • Zhang, Y.; Xiong, Y.; Tang, Y.; Wang, Y. (2013) Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system, Journal of Hazardous Materials, 244– 245: 758– 764.
  • Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281: 438–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.