330
Views
18
CrossRef citations to date
0
Altmetric
Photodegredation

Synthesis of multiwalled carbon nanotubes supported manganese and cobalt zinc oxides nanoparticles for the photodegradation of malachite green

, &
Pages 1477-1485 | Received 23 Jun 2016, Accepted 19 Jan 2017, Published online: 15 Mar 2017

References

  • Xu, L.; Zhu, Y.; He, X.; Han, G.; Tian, X. (2008) Evaluation of a new fungus Ceriporia lacerate strain P2—Its ability to decolorize Alizarin Red and Methyl Orange. World Journal of Microbiology and Biotechnology, 24: 3097.
  • Saeed, K.; Khan, I.; Park, S.Y. (2014) TiO2/amidoxime-modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium. Desalination and Water Treatment, 54: 3146.
  • Rajabi, H.R.; Arjmand, H.; Kazemdehdashti, H.; Farsi, M. (2016) A comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye: Quantum dots vs. magnetic nanoparticles. Journal of Environmental Chemical Engineering, 4: 2830.
  • Roushani, M.; Mavaei, M.; Rajabi, H.R. (2015) Graphene quantum dots as novel and green nano-materials for thevisible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A: Chemical, 409: 102.
  • Ledakowicz, S.; Solecka, M.; Zylla, R.J. (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89: 175.
  • El-Aal, S.E.A.; Hegazy, E.A.; AbuTaleb, M.F.; Dessouki, A.M. (2005) Radiation synthesis of copolymers for adsorption of dyes from their industrial wastes. Journal of Applied Polymer Science, 96: 753.
  • Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R. (2006) Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69: 196.
  • Muruganandham, M.; Swaminathan, M. (2004) Decolourisation of reactive orange 4 by fenton and photo-fenton oxidation technology. Dyes and Pigments, 63: 315.
  • Culp, S.J.; Beland, F.A. (1996) Malachite green: A toxicological review. Journal of the American College of Toxicology, 15: 219.
  • Schnick, R.A. (1998) The impetus to register new therapeutants for aquaculture. The Progressive Fish Culturist, 50: 190.
  • Srivaji, S.; Sinha, R.; Roy, D. (2004) Toxicological effects of malachite green. Aquatic Toxicology, 66: 319.
  • Alderman, D.J.; Clifton-Hadley, R.S. (1993) Malachite green: A pharmacokinetic study in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 16: 297.
  • Bergwerff, A.A.; Scherpenisse, P. (2003) Determination of residues of malachite green in aqueous animals. Journal of Chromatography, B, 788: 351.
  • Culp, S.J.; Beland, F.A.; Heflich, R.H.; Benson, R.W.; Blankenship, L.R.; Webb, P.J.; Mellick, P.W.; Trotter, R.W.; Shelton, S.D.; Greenlees, K.J.; Manjanatha, M.G. (2002) Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed Leucomalachite green. Mutation Research, 506/507: 55.
  • Rajabi, H.R.; Khani, O.; Shamsipur, M.; Vatanpour, V. (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. Journal of Hazardous Material, 250: 370.
  • Nelson, C.R.; Hites, R.A. (1980) Aromatic amines in and near the buffalo river. Environmental Science & Technology, 14: 147.
  • Chen, C.C.; Zhao, W.; Li, J.G.; Zhao, J.C.; Hidaka, H.; Serpone, N. (2002) Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion. Environmental Science & Technology, 36: 3604.
  • Saquib, M.; Muneer, M. (2003) TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes and Pigments, 56: 37.
  • Kyung, H.; Lee, J.; Choi, W. (2005) Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environmental Science & Technology, 39: 2376.
  • Linsebigler, A.L.; Lu, G.; Yates J.T. (1995) Phtocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95: 735.
  • Hoffman, M.R.; Martin, S.T.; Choi, W.; Bahnemann, W. (1995) Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95: 69.
  • Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. (1998) Solution properties of single-walled carbon nanotubes. Science, 282: 95.
  • Ahonen, P.P.; Kauppinen, E.I.; Joubert, J.C.; Deschanvres, J.L.; Van Tendeloo. G. V. (1999) Preparation of nanocrystalline titania powder via aerosol pyrolysis of titaniumtetrabutoxide. Journal of Material Research, 14: 3938.
  • Li, Y.; Ishigaki. T. (2001) Synthesis of crystalline micron spheres of titanium dioxide by thermal plasma oxidation of titanium carbide. Chemistry of Materials, 13: 1577.
  • Ding, X.Z.; Liu. X.H. (1997) Synthesis and microstructure control of nanocrystalline titania powders via a sol— Gel process. Material Science and Engineering A, 224: 210.
  • Zhang, H.; Finnegan, M.; Banfield. J.F. (2001) Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Letters, 1: 81.
  • Yang, J.; Mei, S.; Ferreira, J.M.F. (2001) Hydrothermal synthesis of nanosized titania powders: Influence of tetraalkylammonium hydroxides on particle characteristics. Journal of American Ceramic Society, 84: 1696.
  • Chemseddine, A.; Moritz. T. (1999) Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. European Journal of Inorganic Chemistry, 2: 235.
  • Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakata, T.; Yanagida, S. (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Material Chemistry, 11: 1694.
  • Javir, N.K.; Bamane, S.R. (2016) Synthesis of nanocrystalline ZnCeO2 by sol- Gel method. International Joournal of Science Engineering Applied Science, 2: 424.
  • Talam, S.; Srinivasa Rao Karumuri, S.R.; Gunnam, N. (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnology, 2012. doi:10.5402/2012/372505.
  • Kumar, H.; Manisha, S.P. (2013) Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. International Journal of Chemistry and Chemical Engineering, 3: 155.
  • Durmus, Z.; Kavas, H.; Baykal, A.; Toprak, M.S. (2009) A green chemical route for the synthesis of Mn3O4 nanoparticles. Central European Journal of Chemistry, 7: 555.
  • Saeed, K.; Khan, I.; Sadiq, M. (2016) Synthesis of graphene-supported bimetallic nanoparticles for the sunlight photodegradation of Basic Green 5 dye in aqueous medium. Separation Science Technology, 51: 1421.
  • Rajabi, H.R.; Farsi, M. (2015) Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application fordye decolorization. Journal of Molecular Catalysis A: Chemistry, 399: 53.
  • Shamsipur, M.; Rajabi, H.R.; Khani, O. (2013) Pure and Fe3þ-doped ZnS quantum dots as novel and efficient nanophotocatalysts: Synthesis, characterization and use for decolorization of Victoria blue R. Material Science in Semiconductor Processing, 16: 1154.
  • Ong, S.T.; Cheong, W.S.; Hung, Y.T. (2012) Photodegradation of commercial dye, methylene blue using immobilized TiO2. 4th International Conference on Chemical, Biological and Environmental Engineering, 43: 109.
  • Hassena H. (2016) Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Modern Chemistry and Application, 4. doi:10.4172/2329-6798.1000176.
  • Neppolian, B.; Choi, H.C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Material, 89: 303.
  • Giwa, A.; Nkeonye, P.O.; Bello, K.A.; Kolawole, K.A. (2012) Photocatalytic decolourization and degradation of C. I. Basic Blue 41 Using TiO2 nanoparticles. Journal of Environmental Protection, 3: 1063.
  • Zhao, J.; Hidaka, H.; Takamura, A.; Pelizzetti, E.; Serpone, N. (1993) Photodegradation of surfactants. Zeta-potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions. Langmuir, 9: 1646.
  • Ohtani, B.; Okugawa, Y.; Nishimoto, S.; Kagiya, T. (1987) Photocatalytic activity of titania powders suspended in aqueous silver nitrate solution: correlation with pH-dependent surface structures. Journal of Physical Chemistry, 91: 3550.
  • Kim, D.H.; Anderson, M.A. (1996) Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 94: 221.
  • Li, X.; Liu, G.; Zhao, J. (1999) Two competitive primary processes in the photodegradation of cationic triarylmethane dyes under visible irradiation in TiO2 dispersions. New Jouranl Of Chemistry, 23: 1193.
  • Kansal, S.K.; Kaur, N.; Singh, S. (2009) Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Research Letters, 4: 709.
  • Perez-Estrada, L.A.; Aguera, A.; Hernando, M.D.; Malato, S.; Fernandez-Alba, A.R. (2008) Photodegradation of malachite green under natural sunlight irradiation: Kinetic and toxicity of the transformation products. Chemosphere, 70: 2068.
  • Asilturk, M.; Sayilkan, F.; Arpac, E. (2009) Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 203: 64.
  • Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L. (2007) UV light induced photodegradation of malachite green on TiO2 nanoparticles. Journal of Hazardous Material, 141: 520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.