181
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

, &
Pages 1894-1905 | Received 31 Oct 2016, Accepted 05 Sep 2017, Published online: 10 Nov 2017

References

  • Foster, D.L. (1955) The Caustic Dissolution of Unirradiated Uranium-Aluminum Alloy Fuel in a Trickle-Type Dissolver, Oak Ridge National Laboratory: ORNL 55-11-123: Oak Ridge, TN.
  • Maya, L. (1985) Aluminum Electrochemistry in Liquid Ammonia, Oak Ridge National Laboratory: ORNL-9762: Oak Ridge, TN.
  • McFarlane, J.; Benker, D.; DePaoli, D.W.; Felker, L.K.; Mattus, C.H. (2015) Dissolution and separation of aluminum and aluminosilicates. Separation Science and Technology, 50 (18): 2803–2818.
  • McFarlane, J.; Benker, D.; DePaoli, D.W.; Felker, L.K.; Mattus, C.H. (2014) Aluminum Target Dissolution in Support of the Pu-238 Program, Oak Ridge National Laboratory: ORNL/TM-2014/068: Oak Ridge, TN.
  • Burstein, G.T.; Liu, C.; Souto, R.M.; Vines, S.P. (2004) Origins of pitting corrosion. Corrosion Engineering, Science and Technology, 39 (1): 25–30.
  • Adhikari, S.; Ai, J.H.; Hebert, K.R.; Ho, K.M.; Wang, C.Z. (2010) Hydrogen in aluminum during alkaline corrosion. Electrochimica Acta, 55 (19): 5326–5331.
  • Adhikari, S.; Hebert, K.R. (2008) Participation of aluminum hydride in the anodic dissolution of aluminum in alkaline solutions. Journal of the Electrochemical Society, 155 (5): C189–C195.
  • Adhikari, S.; Lee, J.J.; Hebert, K.R. (2008) Formation of aluminum hydride during alkaline dissolution of aluminum. Journal of the Electrochemical Society, 155 (1): C16–C21.
  • Chu, D. (1996) The kinetics data for aluminum dissolution in the aluminum-air battery. Proceedings Power Sources Conference, 37, 5–8
  • Armstrong, R.D.; Braham, V.J. (1996) The mechanism of aluminium corrosion in alkaline solutions. Corrosion Science, 38 (9): 1463–1471.
  • Kamel, K.H.M.; Awad, S.A.; Kassab, A. (1979) Mechanism of electrochemical reactions at aluminum electrodes in sodium hydroxide solutions. The Journal of Electroanalytical Chemistry, 99: 121–125.
  • Awad, S.A.; Kamel, K.H.M.; Kassab, A. (1979) Corrosion behaviour of aluminum in NaOH solutions. The Journal of Electroanalytical Chemistry, 105: 291–294.
  • Abdel-Gaber, A.M.; Khamis, E.; Abo-EIDahab, H.; Adeel, Sh. (2008) Inhibition of aluminium corrosion in alkaline solutions using natural compound. Materials Chemistry and Physics, 109: 297–305.
  • Bao, L.; Zhang, T.A.; Liu, Y.; Dou, Z.; Lu, G.; Wang, X.; Ma, J.; Jiang, X. (2010) The most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH. Chinese Journal of Chemical Engineering, 18: 630–634.
  • Davis, J.R., (Ed.) (1999) Corrosion of Aluminum and Aluminum Alloys, ASM International: MaterialsPark, OH.
  • Foley, R.T. (1986) Localized Corrosion of Aluminum Alloys - a Review, American University: Washington DC: AD–A132 582, Arlington VA.
  • Augustynski, J. (1978) On the behavior of aggressive and inhibiting anions in the breakdown of passivity of aluminum. Frankenthal, R.P.; Kruger, J., Ed. Passivity of Metals, Electrochemical Society: Princeton, NJ, 989–1002.
  • Horanyi, G.; Joo, P. (2000) Application of the radiotracer technique for the study of the specific anion adsorption on Al2O3 in acidic medium. Journal of Colloid and Interface Science, 231 (2): 373–378.
  • Kolics, A.; Polkinghorne, J.C.; Wieckowski, A. (1998) Adsorption of sulfate and chloride ions on aluminum. Electrochimica Acta, 43 (18): 2605–2618.
  • Carrier, X.; Marceau, E.; Lambert, J.F.; Che, M. (2007) Transformations of gamma-alumina in aqueous suspensions 1. Alumina chemical weathering studied as a function of pH. The Journal of Colloid and Interface Science, 308 (2): 429–437.
  • Desai, A.B.R. (2010) Reduction of perchlorate and nitrate by aluminum activated by pH change and electrochemically induced pitting corrosion. PhD Civil Engineering, Texas A&M University.
  • Bakumenko, O.M.; Larin, V.I.; Lukashchuk, T.S. (1998) Kinetics of aluminum dissolution in the alkaline water-alcohol solutions. Visn Khark University, 2: 193–195
  • Khalil, N.; Mahgoub, F.; Abd-El-Nabey, B.; Abdel-Aziz, A. (2003) Corrosion of aluminum in perchloric acid in presence of various inorganic additives. Corrosion Engineering, Science and Technology, 38 (3): 205–210.
  • Lukashchuk, T.S.; Larin, V.I.; Bakumenko, O.M.; Pshenichnaya, S.V. (2005) Kinetics of ionization of aluminum in solutions of NaOH with various additives. Visn Khark National University Im V N Karazina, 648: 174–177.
  • Lukashchuk, T.S.; Larin, V.I.; Bakumenko, O.M.; Guzhva, A.A. (2003) Effect of nitrate and perchlorate ions on the kinetics of ionization of aluminum in NaOH solutions. Visn Khark National University Im V N Karazina, 596: 196–200.
  • Chu, D.; Savinell, R.F. (1991) Experimental data on aluminum dissolution in KOH electrolytes. Electrochimica Acta, 36 (10): 1631–1638.
  • Mattus, A.J.; Mattus, C.H.; Hunt, R.D. (2002) Investigation into the Control and Kinetics of Aluminosilicate Formation on Stainless Steel Surfaces at 100°C, Oak Ridge National Laboratory: ORNL/TM-2002/47: Oak Ridge, TN.
  • Soler, L.; Candela, A.M.; Macanas, J.; Munoz, M.; Casado, J. (2009) In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate. Journal of Power Sources, 192: 21–26.
  • Hiraki, T.; Takeuchi, M.; Hisa, M.; Akiyama, T. (2005) Hydrogen production from waste aluminum at different temperatures, with LCA. Materials Transactions, 46: 1052–1057.
  • Martirosyan, K.S.; Wang, L.; Vicent, A.; Luss, D. (2009) Nanoenergetic Gas-Generators: design and Performance. Propellants, Explosives, Pyrotechnics, 34 (6): 532–538.
  • Watts, H.L.; Utley, D.W. (1953) Volumetric analysis of sodium aluminate solutions. Analytical Chemistry, 25 (6): 864–867.
  • Alexandrov, A.A. (2004) The equations for thermophysical properties of aqueous solutions of sodium hydroxide. In 14th International Conference on the Properties of Water and Steam, Nakahara, M.; M, N.; Ueno, M.; Yasuoka, K.; Watanabe, K., Ed. Maruzen co., Ltd IAWPS: Kyoto, Japan. Vol. Water, Steam and Aqueous Solutions for Electric Power: Advances in Science and Technology, 86–90.
  • DuPont. (1996) Teflon PTFE Properties Handbook. In DuPont Fluoroproducts, Wilmington, DE. Vol. 220313D.
  • Schrödle, S.; Königsberger, E.; May, P.M.; Hefter, G. (2010) Heat capacities of aqueous sodium hydroxide/aluminate mixtures and prediction of the solubility constant of boehmite up to 300°C. Geochimica Et Cosmochimica Acta, 74: 2368–2379.
  • Schrödle, S.; Königsberger, E.; May, P.M.; Hefter, G. (2008) Heat capacities of aqueous solutions of sodium hydroxide and water ionization up to 300°C at 10 MPa. Geochimica Et Cosmochimica Acta, 72: 3124–3138.
  • Criss, C.M.; Millero, F.J. (1996) Modeling the heat capacities of aqueous 1-1 electrolyte solutions with Pitzer’s equations. The Journal of Physical Chemistry, 100: 1288–1294.
  • Lunder, O.; Heen, K.F.; Nisancioglu, K. (2004) Pretreatment of aluminum alloy 6060 by selective removal of surface intermetallics. Corrosion, 7: 622–631.
  • Yin, H.; Sabau, A.S.; Skszek, T.W.; Niu, X. (2013) Microstructure Evolution Modeling for Solution Treatment of Aluminum Alloys, John Wiley & Sons, Inc: 79–86.
  • Streicher, M.A. (1949) The dissolution of aluminum in sodium hydroxide solutions. II. Journal of the Electrochemical Society, 96 (3): 170–194.
  • Koroleva, E.V.; Thompson, G.E.; Hollrigl, G.; Bloeck, M. (1999) Surface morphological chnages of aluminum alloys in alkaline solution: Effect of second phase material. Corrosion Science, 41 (8): 1475–1495.
  • Doan, L.C.; Ohmori, Y.; Nakai, K. (2000) Precipitation and dissolution reactions in a 6061 aluminum alloy. Materials Transactions, JIM, 41: 300–305.
  • Streicher, M.A. (1948) The dissolution of aluminum in sodium hydroxide solutions. Journal of the Electrochemical Society, 93 (6): 285–316.
  • Weber, C.F. (2001) Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility, Oak Ridge National Laboratory: ORNL/TM-2001/109: Oak Ridge, TN.
  • Barrer, R.M.; Cole, J.F.; Villiger, H. (1970) Chemistry of soil minerals. Part VII. Synthesis, properties, and crystal structures of salt-filled cancrinites. Journal of the Chemical Society A, 1523–1531.
  • Pankratz, L.B. (1983) Thermodynamic Properties of the Elements and Oxides, US Bureau of Mines: PB83-174052: Albany, OR.
  • Besmann, T.M. (2002) Thermochemical modeling of oxide glasses. Phase Equilibria in Ceramic Systems, 85 (12): 2887–2994.
  • Hemingway, B.S.; Robic, R.A. (1977) Enthalpies of formation of low albite (NaAlSi3O8), gibbsite (Al(OH)3) and NaAlO2; revised values for standard enthalpy and free energy of formation at 298K of some aluminosilicate minerals. Journal of Research of the U. S. Geological Survey, 5 (4): 413–430.
  • Wesolowski, D.J. (1992) Aluminum speciation and equilibria in aqueous solution (I): The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100 °C. Geochimica Et Cosmochimica Acta, 56 (3): 1065–1091.
  • Li, X.-B.; Yan, L.; Zhou, Q.-S.; Liu, G.-H.; Peng, Z.-H. (2012) Thermodynamic model for equilibrium solubility of gibbsite in concentrated NaOH solutions. Transactions of Nonferrous Metals Society of China, 22: 447–455.
  • Packter, A.; Dhillon, H.S. (1970) Kinetics and mechanism of the heterogeneous reactions of γ-, κ-, and α-aluminas with aqueous sodium hydroxide solutions. Journal of the Chemical Society A, 8: 1266–1270
  • Wymer, R.G.; Helton, D.M.; Kibbey, A.H.; Land, J.L. (1955) Caustic Dissolution: Preliminary Studies, Oak Ridge National Laboratory: ORNL-1782: Oak Ridge, TN.
  • Furukawa, G.T.; McCoskey, R.E.; King, G.J. (1952) Calorimetric properties of polytetrafluoroethylene (Teflon) from 0 to 365 K. Journal of Research of the National Bureau of Standards, 49 (4): 273–276.
  • DeVoe, H. (2015) Reactions and other chemical processes. In Thermodynamics and Chemistry, LibreTexts: University of California: Davis.
  • Korobov, V.; Ochkov, V. (2011) Chemical Kinetics with Mathcad and Maple, Springer: Vienna.
  • Merzhanov, A.G.; Abramov, V.G. (1981) Thermal explosion of explosives and propellants. A review. Propellants and Explosives, 6: 130–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.