810
Views
20
CrossRef citations to date
0
Altmetric
Articles

A novel technique for microcrystalline graphite beneficiation based on alkali-acid leaching process

, , , &
Pages 982-989 | Received 10 Jun 2017, Accepted 13 Nov 2017, Published online: 26 Dec 2017

References

  • Manning, T.J.; Mitchell, M.; Stach, J.; Vickers, T. (1999) Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma [J]. Carbon, 37: 1159–1164.
  • Asghar, H.M.A.; Hussain, S.N.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. (2015) Potential graphite materials for the synthesis of GICs [J]. Chemical Engineering Communicable, 202: 508–512.
  • Brown, N.W. (2015) Mercaptan’s removal from aqueous solution using modified graphite-based adsorbent through batch-wise adsorption-regeneration [J]. Chemical Engineering Communication, 202: 1155–1160.
  • Sullivan, B.J. (2005) The 2004 Benjamin Franklin Medal in mechanical engineering presented to Roger Bacon [J]. Journal Franklin Institute, 342: 618–625.
  • Xie, W.; Zhu, X.; Yi, S.; Kuang, J.; Cheng, H.; Tang, W.; Deng, Y. (2016) Electromagnetic absorption properties of natural microcrystalline graphite [J]. Materials & Design, 90: 38–46.
  • Wang, X.; Gai, G.S.; Yang, Y.F.; Shen, W.C. (2008) Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution [J]. Powder Technology, 181: 51–56.
  • Lu, X.; Forssberg, E. (2001) Flotation selectivity and upgrading of Woxna fine graphite concentrate [J]. Mineral Engineering, 14: 1541–1543.
  • Chelgani, S.C.; Rudolph, M.; Kratzsch, R.; Sandmann, D.; Gutzmer, J. (2016) A review of graphite beneficiation techniques [J]. Mineral Processing and Extractive Metallurgy Review, 37: 58–68.
  • Wissler, M. (2006) Graphite and carbon powders for electrochemical applications [J]. Journal of Power Sources, 156: 142–150.
  • Kim, K.J.; Lee, T.S.; Kim, H.G.; Lim, S.H.; Lee, S.M. (2014) A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries [J]. Electrochimica Acta, 135: 27–34.
  • Wang, H.; Li, Y.; Zhu, T.; Sang, S.; Wang, Q. (2014) Microstructures and mechanical properties of Al2O3–C refractories with addition of microcrystalline graphite [J]. Ceramic International, 40: 11139–11148.
  • Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. (2004) Improvement of natural graphite as a lithiumion battery anode material, from raw flake to carbon-coated sphere. [J]. J. Mater. Chem., 14: 1754–1758.
  • Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K. (2003) Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal [J]. Journal of Power Sources, 119: 8–15.
  • Pugh, R.J. (2000) Non-ionic polyethylene oxide frothers in graphite flotation [J]. Mineral Engineering, 13: 151–162.
  • Shi, Q.; Liang, X.; Feng, Q.; Chen, Y.; Wu, B. (2015) The relationship between the stability of emulsified diesel and flotation of graphite [J]. Mineral Engineering, 78: 89–92.
  • Li, H.; Feng, Q.; Ou, L.; Long, S.; Cui, M.; Wen, X. (2013) Study on washability of microcrystal graphite using float–sink tests [J]. International Journal of Mineral Science and Technology, 23: 855–861.
  • Niu, X.; Li, X.; Zhao, J.; Ren, Y.; Yang, Y. (2011) Preparation and coagulation efficiency of polyaluminium ferric silicate chloride composite coagulant from wastewater of high-purity graphite production [J]. Journal of Environment Sci-China, 23: 1122–1128.
  • Wang, H.; Feng, Q.; Tang, X.; Liu, K. (2016) Preparation of high-purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre-treatment and acid leaching process [J]. Separation Sciences and Technology, 51: 2465–2472.
  • Lu, X.J.; Forssberg, E. (2002) Preparation of high-purity and low-sulphur graphite from Woxna fine graphite concentrate by alkali roasting [J]. Mineral Engineering, 15: 755–757.
  • Gladyshev, S.V.; Akcil, A.; Abdulvaliyev, R.A.; Tastanov, E.A.; Beisembekova, K.O.; Temirova, S.S.; Deveci, H. (2015) Recovery of vanadium and gallium from solid waste by-products of Bayer process [J]. Mineral Engineering, 74: 91–98.
  • Wang, H.; Feng, Q.; Tang, X.; Zuo, K.; Liu, K. (2017) Insights into alkali-acid leaching of sericite: Dissolution behavior and mechanism [J]. Minerals, 7: 196.
  • Wang, H.; Feng, Q.; Liu, K. (2016) The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process [J]. Applications Clay Sciences, 132-133: 273–280.
  • Crundwell, F.K. (2014) The mechanism of dissolution of minerals in acidic and alkaline solutions: part II application of a new theory to silicates, aluminosilicates and quartz [J]. Hydrometallurgy, 149: 265–275.
  • Crundwell, F.K. (2015) The mechanism of dissolution of minerals in acidic and alkaline solutions: Part IV equilibrium and near-equilibrium behavior [J]. Hydrometallurgy, 153: 46–57.
  • Oelkers, E.H.; Schott, J.; Gauthier, J.M.; Herrero-Roncal, T. (2008) An experimental study of the dissolution mechanism and rates of muscovite [J]. Geochimica Et Cosmochimica Acta, 72: 4948–4961.
  • K Kg, K.; Wolery, T.J. (1989) Muscovite dissolution kinetics as a function of pH and time at 70°C [J]. Geochimica Et Cosmochimica Acta, 53: 1493–1501.
  • Ma, X.; Yang, J.; Ma, H.; Liu, C.; Zhang, P. (2015) Synthesis and characterization of analcime using quartz syenite powder by alkali-hydrothermal treatment [J]. Microporous and Mesoporous Materials, 201: 134–140.
  • Khajavi, S.; Kapteijn, F.; Jansen, J.C. (2007) Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation [J]. Journal of Membrane Science, 299: 63–72.
  • Liu, Y.; Naidu, R. (2014) Hidden values in bauxite residue (red mud): Recovery of metals [J]. Waste Management, 34: 2662–2673.
  • Samal, S.; Ray, A.K.; Bandopadhyay, A. (2013) Proposal for resources, utilization and processes of red mud in India: A review [J]. International Journal of Mineral Processing, 118: 43–55.
  • Smith, P. (2009) The processing of high silica bauxites-review of existing and potential processes [J]. Hydrometallurgy, 98: 162–176.
  • Barnes, M.C.; Addai-Mensah, J.; Gerson, A.R. (1999) The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor [J]. Microporous and Mesoporous Materials, 31 (3): 287–302.
  • Wang, H.; Feng, Q.; Liu, K.; Li, Z.; Tang, X.; Li, G. (2017) Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process [J]. Journal of Environmental Management, 196: 72–79.
  • Liang, W.; Couperthwaite, S.J.; Kaur, G.; Yan, C.; Johnstone, D.W.; Millar, G.J. (2014) Effect of strong acids on red mud structural and fluoride adsorption properties [J]. Journal Colloid Interface Sciences, 423: 158–165.
  • Li, X.; Yu, S.; Dong, W.; Chen, Y.; Zhou, Q.; Qi, T.; Liu, G.; Peng, Z.; Jiang, Y. (2015) Investigating the effect of ferrous ion on the digestion of diasporic bauxite in the Bayer process [J]. Hydrometallurgy, 152: 183–189.
  • Xu, B.; Smith, P. (2012) The effect of iron sources on caustic and alumina recovery from synthetic bayer DSP (sodalite) [J]. Hydrometallurgy, 129-130: 26–29.
  • Huertas, F.J.; Lei, C.; Wollast, R. (1999) Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study [J]. Geochimica Et Cosmochimica Acta, 63: 3261–3275.
  • Crundwell, F.K. (2013) The dissolution and leaching of minerals: Mechanisms, myths and misunderstandings [J]. Hydrometallurgy, 139: 132–148.
  • Maccarthy, J.; Nosrati, A.; Skinner, W.; Addai-Mensah, J. (2015) Effect of mineralogy and temperature on atmospheric acid leaching and rheological behaviour of model oxide and clay mineral dispersions [J]. Powder Technology, 286: 420–430.
  • Li, S.; Hihara, L.H. (2012) In situ Raman spectroscopic identification of rust formation in Evans’ droplet experiments [J]. Electrochemistry Communication, 18: 48–50.
  • Power, G.; Loh, J.S.C.; Vernon, C. (2010) Organic compounds in the processing of lateritic bauxites to alumina: part 1: Origins and chemistry of organics in the Bayer process [J]. Hydrometallurgy, 105: 1–29.
  • Machold, T.; Macedi, E.; Laird, D.W.; May, P.M.; Hefter, G.T. (2009) Decomposition of Bayer process organics: Low-molecular-weight carboxylates [J]. Hydrometallurgy, 99: 51–57.
  • Rao, R.B.; Patnaik, N. (2004) Preparation of high pure graphite by alkali digestion method [J]. Scandinavian Journal of Metallurgy, 33: 257–260.
  • Ge, P.; Wang, H.J.; Zhao, J.; Xie, L.; Zhang, Q. (2010) Preparation of high purity graphite by an alkaline roasting–leaching method [J]. Carbon, 48: 2123–2124.
  • Liu, H.Q.; Xie, Y.Z.; Ye, L.I.; Lin, Y. (2000) Study on purification technology of aphanitic graphite by calcining under high temperature and alkali [J]. Carbon Techniques, 1: 12–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.