194
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Application of biochar derived from rice straw for the removal of Th(IV) from aqueous solution

, , , , , , , , , & show all
Pages 1511-1521 | Received 20 Jul 2017, Accepted 27 Nov 2017, Published online: 26 Dec 2017

References

  • Humelnicu, D.G.; Drochioiu, M.I.; Sturza, A.; Cecal, K.P. (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 270: 637.
  • Choppin, G.R.;. (1999) Utility of oxidation state analogs in the study of plutonium behavior. Radiochimica Acta, 85: 89.
  • Sheng, G.; Hu, J.; Wang, X. (2008) Sorption properties of Th(IV) on the raw diatomite–effects of contact time, pH, ionic strength and temperature. Applied Radiation and Isotopes, 66: 1313.
  • Tan, X.; Wang, X.; Chen, C.; Sun, A. (2006) Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Applied Radiation and Isotopes, 65: 375.
  • Chen, C.; Li, X.; Zhao, D.; Tan, X.; Wang, X. (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanatubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302: 449.
  • Chen, C.L.; Li, X.L.; Wang, X.K. (2007) Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption. Radiochimica Acta, 95: 261–266.
  • Zhao, D.L.; Feng, S.J.; Chen, C.L.; Chen, S.H.; Xu, D.; Wang, X.K. (2008) Adsorption of thorium(IV) on MX-80 bentonite: effect of pH, ionic strength and temperature. Applied Clay Science, 41: 17.
  • Zhang, H.; Wang, X.; Liang, H.; Tan, T.; Wu, W. (2016) Adsorption behavior of Th(IV) into illite: effect of contact time, pH value, ionic strength, humic acid and temperature. Applied Clay Science, 127–128: 35.
  • Pan, N.; Deng, J.; Guan, D.; Jin, Y.; Xia, C. (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Applied Clay Science, 287: 478.
  • Hadjittofi, L.; Pashalidis, I. (2016) Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalination and Water Treatment, 57: 27864.
  • Wang, J.; Chen, Z.; Chen, W.; Li, Y.; Wu, Y.; Hu, J.; Alsaedi, A.; Alharbi, N.S.; Dong, J.; Linghu, W. (2016) Effect of pH, ionic strength, humic substances and temperature on the sorption of Th(IV) onto NKF-6 zeolite. Journal of Radioanalytical and Nuclear Chemistry, 310: 597.
  • Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Sik, O.Y.; Cao, X. (2015) A review of biochar at a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environment Science and Tecnology, 46: 406.
  • Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41: 990.
  • Liatsou, I.; Michail, G.; Demetriou, M.; Pashalidis, I. (2017) Thorium binding by biochar fibers derived from Luffa Cylindrica after controlled surface oxidation. Journal of Radioanalytical and Nuclear Chemistry, 311: 871.
  • Reiller, P.; Casanova, F.; Moulin, V. (2005) Influence of addition order and contact time on thorium(IV) retention by hematite in the presence of humic acids. Environmental Science and Technology, 39: 1641.
  • Sheng, G.; Li, J.; Shao, D.; Hu, J.; Chen, C.; Chen, Y.; Wang, X. (2010) Adsorption of copper(II) on multi walled carbon nanotubes in the absence and presence of humic or fulvic acids. Journal of Hazardous Materials, 178: 333.
  • Kim, W.K.; Shim, T.; Kim, Y.S.; Hyun, S.; Ryu, C.; Park, Y.K.; Jung, J. (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthusat different pyrolytic temperatures. Bioresource Technology, 138: 266.
  • Tong, X.J.; Li, J.Y.; Yuan, J.H.; Xu, R.K. (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172: 828.
  • Kołodyńska, D.; Krukowska, J.; Thomas, P. (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307: 353.
  • Hu, B.; Hu, Q.; Li, X.; Pan, H.; Tang, X.; Chen, C.; Huang, C. (2017) Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide. Journal of Molecular Liquids, 229: 6.
  • Zong, P.; Wang, H.; Pan, H.; Zhao, Y.; He, C. (2013) Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 295: 1969.
  • Wang, X.X.; Yang, S.B.; Shi, W.Q.; Li, J.X.; Wang, X.K.; Hayat, T. (2015) Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environmental Science and Technology, 49: 11721.
  • Wang, X.; Lu, S.; Chen, L.; Li, J.; Dai, S.; Wang, X. (2015) Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite-polyacrylamide composites. Journal of Radioanalytical and Nuclear Chemistry, 306: 497.
  • Li, Y.; Sheng, G.; Sheng, J. (2014) Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(III) from aqueous solution. Journal of Molecular Liquids, 199: 474.
  • Ho, Y.;. (2006) Review of second-order models for adsorption systems. Journal of Hazardous Materials, 37: 681.
  • Ho, Y.; McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34: 451.
  • Ijagbemi, C.O.; Baek, M.; Kim, D. (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 166: 538.
  • Yang, S.; Hu, J.; Chen, C.; Shao, D.; Wang, X. (2011) Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environmental Science and Technology, 45: 3621.
  • Fan, Q.H.; Tan, X.L.; Li, J.X.; Wang, X.K.; Wu, W.S.; Montavon, G. (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environmental Science and Technology, 43: 5776.
  • Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. (2016) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon, 99: 123.
  • Sheng, G.; Shen, R.; Dong, H.; Li, Y. (2013) Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation. Environmental Science and Pollution Research, 20: 3708.
  • Sheng, G.; Dong, H.; Li, Y. (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. Journal of Environment Radioactivity, 113: 108.
  • Yu, S.M.; Chen, C.L.; Chang, P.P.; Wang, T.T.; Lu, S.S.; Wang, X.K. (2008) Adsorption of Th(IV) onto Al-pillared rectorite: effect of pH, ionic strength, temperature, soil humic acid and fulvic acid. Applied Clay Science, 38: 219.
  • Ren, X.; Wang, S.; Yang, S. (2010) Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical Nuclear and Chemistry, 283: 253.
  • Pan, D.; Fan, Q.; Li, P.; Liu, S.; Wu, W. (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chemical Engineering Journal, 172: 898.
  • Xu, Q.; Pan, D.; Wu, W. (2015) Effects of pH, ionic strength, humic substances and temperature on Th(IV) sorption onto ZSM-5. Journal of Radioanalytical Nuclear and Chemistry, 305: 535.
  • Tan, X.; Wang, X.; Geckeis, H.; Rabung, T. (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEMEDS, XPS, TRLFS and batch techniques. Environmental Science and Technology, 42: 6532.
  • Yan, W.; Bai, R. (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research, 39: 688.
  • Langmuir, I.;. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40: 1361.
  • Kilpatrick, M.; Baker, L.L. (1955) A study of fast reactions in fuel-oxidant system: anhydrous hydrazine with 100 per cent nitric acid. Symposium (International) on Combustion, 5: 196.
  • Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Dong-Cheol, S.; Ju-Sik, C.; Sung-Eun, L.; Lee, S.S.; Ok, Y.S. (2015) Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 290: 43.
  • Shahwan, T.; Erten, H.N. (2004) Temperature effects in barium sorption on natural kaolinite and chlorite-illite clays. Journal of Radioanalytical Nuclear and Chemistry, 260: 43.
  • Biswas, K.; Saha, S.K.; Ghosh, U.C. (2007) Adsorption of fluoride from aqueous solution by a synthetic iron(III)-auminum(III) mixed oxide. Industrial and Engineering Chemistry Research, 46: 5346.
  • Yang, S.T.; Sheng, G.D.; Tan, X.L.; Hu, J.; Du, J.Z.; Montavon, G.; Wang, X.K. (2011) Determination of Ni(II) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochimica Et Cosmochimica Acta, 75: 6520.
  • Li, J.; Zhang, S.; Chen, C.; Zhao, G.; Yang, X.; Li, J.; Wang, X. (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Applied Materials and Interfaces, 4: 4991.
  • Chen, C.; Wang, X. (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial and Engineering Chemistry Research, 45: 9144.
  • Badruddoza, A.Z.M.; Tay, A.S.H.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. (2011) Carboxymethyl-b-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. Journal of Hazardous Materials, 185: 1177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.