336
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption of heavy metals and methylene blue from aqueous solution with citric acid modified peach stone

, , , , , & show all
Pages 1678-1688 | Received 02 Jun 2017, Accepted 06 Feb 2018, Published online: 13 Apr 2018

References

  • Adamczuk, A.; Kołodyńska, D. (2015) Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chemical Engineering Journal, 274: 200.
  • Zhang, W.; Li, H.; Kan, X.; Lei, D.; Han, Y.; Jiang, Z.; Yang, H.; Li, A.; Cheng, R. (2012) Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117 (10): 40.
  • Zhou, Y.; Zhang, R.; Gu, X.; Lu, J. (2015) Adsorption of divalent heavy metal ions from aqueous solution by citric acid modified pine sawdust. Separation Science and Technology, 50 (2): 245.
  • Liu, F.; Zou, H.; Hu, J.; Liu, H.; Peng, J.; Chen, Y.; Lu, F.; Huo, Y. (2016) Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads. Chemical Engineering Journal, 287: 410.
  • Mahmoud, D.K.; Salleh, M.A.M.; Wan, A.W.A.K.; Idris, A.; Abidin, Z.Z. (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, s 181–s 182 (2): 449.
  • Zeng, G.; He, Y.; Zhan, Y.; Zhang, L.; Pan, Y.; Zhang, C.; Yu, Z. (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. Journal of Hazardous Materials, 317: 60.
  • Sajab, M.S.; Chia, C.H.; Zakaria, S.; Jani, S.M.; Ayob, M.K.; Chee, K.L. (2011) Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology, 102 (15): 7237.
  • Mata, Y.N.; Blázquez, M.L.; Ballester, A.; González, F.; Muñoz, J.A. (2009) Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized fucus vesiculosus. Journal of Hazardous Materials, 163 (s 2–3): 555.
  • Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N. (2010) Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal of Hazardous Materials, 176 (1–3): 510.
  • Kaya, K.; Pehlivan, E.; Schmidt, C.; Bahadir, M. (2014) Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions. Food Chemistry, 158 (8): 112.
  • Krishnani, K.K.; Meng, X.; Christodoulatos, C.; Boddu, V.M. (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153 (3): 1222.
  • Li, Y.; Zhao, B.; Zhang, L.; Han, R. (2013) Biosorption of copper ion by natural and modified wheat straw in fixed-bed column. Desalination and Water Treatment, 51: 5735.
  • Witek-Krowiak, A.; Harikishore, K.R.D. (2013) Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste–unusual isotherms and insights of binding mechanism. Bioresource Technology, 127 (127C): 350.
  • Wang, X.S.; Qin, Y. (2006) Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by alternanthera philoxeroides biomass. Journal of Hazardous Materials, 138 (3): 582.
  • Velazquezjimenez, L.H.; Pavlick, A.; Rangelmendez, J.R. (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Industrial Crops & Products, 43 (1): 200.
  • Sajab, M.S.; Chia, C.H.; Zakaria, S.; Khiew, P.S. (2013) Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresource Technology, 128C (1): 571.
  • Low, K.S.; Lee, C.K.; Mak, S.M. (2004) Sorption of copper and lead by citric acid modified wood. Wood Science and Technology, 38 (8): 629.
  • Pehlivan, E.; Altun, T.; Parlayici, S. (2013) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 135 (4): 2229.
  • Leyva-Ramos, R.; Landin-Rodriguez, L.E.; Leyva-Ramos, S.; Medellin-Castillo, N.A. (2012) Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(ii) from water solution. Chemical Engineering Journal, 180 (3): 113.
  • Zhang, R.; Zhou, Y.; Gu, X.; Lu, J. (2015) Competitive adsorption of Methylene Blue and Cu2+ onto citric acid modified pine sawdust. CLEAN-Soil, Air, Water, 43 (1): 96.
  • Rashed, M.N. (2006) Fruit stones from industrial waste for the removal of lead ions from polluted water. Environmental Monitoring & Assessment, 119 (1–3): 31.
  • Hansen, H.K.; Arancibia, F.; Gutiérrez, C. (2010) Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials, 180 (1–3): 442.
  • Ntuli, V.; Hapazari, I. (2012) Sustainable waste management by production of activated carbon from agroforestry residues. South African Journal of Science, 109 (1–2): 1.
  • Girgis, B.S.; Elkady, A.A.; Attia, A.A.; Fathy, N.A.M.A.A.W. (2009) Impact of air convection on H3PO4-activated biomass. Carbon Letters, 10 (2): 114.
  • Marshall, W.E.; Wartell, L.H.; Boler, D.E.; Johns, M.M.; Toles, C.A. (1999) Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69 (69): 263–268.
  • Wing, R.E. (1996) Corn fiber citrate: preparation and ion-exchange properties. Industrial Crops & Products, 5 (4): 301–305.
  • Rayón, E.; Ferrandiz, S.; Rico, M.I.; López, J.; Arrieta, M.P. (2014) Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds. International Journal of Food Properties, 18 (6): 1211.
  • Yang, H.; Yan, R.; Chen, H.; Dong, H.L.; Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86 (12–13): 1781.
  • Zhu, B.; Fan, T.; Zhang, D. (2008) Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials, 153 (1–2): 300.
  • Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197: 356.
  • Gong, J.L.; Wang, X.Y.; Zeng, G.M.; Chen, L.; Deng, J.H.; Zhang, X.R.; Niu, Q. (2012) Copper (II) removal by pectin-iron oxide magnetic nanocomposite adsorbent. Chemical Engineering Journal, 185–186 (1): 100.
  • Pitsari, S.; Tsoufakis, E.; Loizidou, M. (2013) Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chemical Engineering Journal, 223 (3): 18.
  • Fan, H.L.; Li, L.; Zhou, S.F.; Liu, Y.Z. (2016) Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption. Ceramics International, 42 (3): 4228.
  • Badruddoza, A.Z.; Tay, A.S.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. (2010) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. Journal of Hazardous Materials, 185 (2–3): 1177.
  • Chakravarty, S.; Pimple, S.; Chaturvedi, H.T.; Singh, S.; Gupta, K.K. (2008) Removal of copper from aqueous solution using newspaper pulp as an adsorbent. Journal of Hazardous Materials, 159 (2–3): 396.
  • Qiu, H.; Yan, J.; Lan, G.; Liu, Y.; Song, X.; Peng, W.; Cui, Y. (2016) Removal of Cu2+ from wastewater by modified xanthan gum (xg) with ethylenediamine (eda). Rsc Advances, 6 (86): 83226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.