710
Views
22
CrossRef citations to date
0
Altmetric
Articles

Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions

, , &
Pages 2536-2549 | Received 28 Sep 2017, Accepted 05 Apr 2018, Published online: 18 Apr 2018

References

  • Huang, Y.; Fulton, A.N.; Keller, A.A. (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. The Science of the Total Environment, 571: 1029–1036.
  • Şener, S.; Özyılmaz, A. (2010) Adsorption of naphthalene onto sonicated talc from aqueous solutions. Ultrasonics Sonochemistry, 17 (5): 932–938.
  • Vela, N.; Martínez-Menchón, M.; Navarro, G.; Pérez-Lucas, G.; Navarro, S. (2012) Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight. Journal of Photochemistry and Photobiology A, 232: 32–40.
  • Kaya, E.M.Ö.; Özcan, A.S.; Gök, Ö.; Özcan, A. (2013) Adsorption kinetics and isotherm parameters of naphthalene onto natural-and chemically modified bentonite from aqueous solutions. Adsorption, 19 (2–4): 879–888.
  • Yaqubzadeh, A.R.; Ahmadpour, A.; Bastami, T.R.; Hataminia, M.R. (2016) Low-cost preparation of silica aerogel for optimized adsorptive removal of naphthalene from aqueous solution with central composite design (CCD). Journal of Non-Crystal Solids, 447: 307–314.
  • Karyab, H.; Yunesian, M.; Nasseri, S.; Mahvi, A.H.; Ahmadkhaniha, R.; Rastkari, N.; Nabizadeh, R. (2013) Polycyclic aromatic hydrocarbons in drinking water of Tehran, Iran. Journal of Environment Health Sciences Engineering, 11 (1): 25.
  • Gök, Ö.; Özcan, A.S.; Özcan, A. (2008) Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions. Desalination, 220 (1–3): 96–107.
  • Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. (2009) Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170 (2): 530–551.
  • Usman, M.; Li, D.; Razzaq, R.; Yaseen, M.; Li, C.; Zhang, S. (2015) Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin. Journal of Industrial Engineering Chemistry, 23: 21–26.
  • Ramteke, L.P.; Gogate, P.R. (2015) Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. Journal of Industrial Engineering Chemistry, 28: 247–260.
  • Rad, M.N.; (2011) Adsorption behavior of naphthalene onto organoclay in aqueous solution ( Doctoral dissertation, Northeastern University).
  • Yuan, M.H.; Chang, C.Y.; Shie, J.L.; Chang, C.C.; Chen, J.H.; Tsai, W.T. (2010) Destruction of naphthalene via ozone-catalytic oxidation process over Pt/Al2O3 catalyst. Journal of Hazardous Materials, 175 (1): 809–815.
  • Tansel, B.; Regula, J. (2000) Coagulation enhanced centrifugation for treatment of petroleum hydrocarbon contaminated waters. Journal of Environmental Sciences Health A, 35 (9): 1557–1575.
  • Ali, O.A.; Tarek, S.J. (2009) Removal of polycyclic aromatic hydrocarbons from Ismailia Canal water by chlorine, chlorine dioxide and ozone. Desalination Water Treatment, 1 (1–3): 289–298.
  • Elmaleh, S.; Ghaffor, N. (1996) Upgrading oil refinery effluents by cross-flow ultrafiltration. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 34 (9): 231–238.
  • Reinhard, M.; Goodman, N.L.; McCarty, P.L.; Argo, D.G. (1986) Removing trace organics by reverse osmosis using cellulose acetate and polyamide membranes. Journal-American Water Works Association, 78 (4): 163–174.
  • Chang, Y.I.; Cheng, H.P.; Lai, S.H.; Ning, H. (2014) Biodegradation of naphthalene in the oil refinery wastewater by enriched activated sludge. International Biodeterioration Biodegradation, 86: 272–277.
  • Sharma, A.; Lee, B.K. (2015) Adsorptive/photo-catalytic process for naphthalene removal from aqueous media using in-situ nickel doped titanium nanocomposite. Journal of Environmental Management, 155: 114–122.
  • Wang, J.; Chen, Z.; Chen, B. (2014) Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 48 (9): 4817–4825.
  • Giusto, L.A.; Pissetti, F.L.; Castro, T.S.; Magalhães, F. (2017) Preparation of activated carbon from sugarcane bagasse soot and methylene blue adsorption. Water, Air, & Soil Pollution, 228 (7): 249.
  • Zhu, J.; Gu, H.; Guo, J.; Chen, M.; Wei, H.; Luo, Z.; Colorado, H.A.; Yerra, N.; Ding, D.; Ho, T.C.; Haldolaarachchige, N. (2014) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (VI) removal. Journal of Materials Chemical A, 2 (7): 2256–2265.
  • Nassar, N.N. (2010) Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 184 (1): 538–546.
  • Ngu, P.Z.Z.; Chia, S.P.P.; Fong, J.F.Y.; Ng, S.M. (2016) Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. New Carbon Materials, 31 (2): 135–143.
  • Das, B.; Dadhich, P.; Pal, P.; Srivas, P.K.; Bankoti, K.; Dhara, S. (2014) Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. Journal of Materials Chemical B, 2 (39): 6839–6847.
  • Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communicable, 48 (70): 8835–8837.
  • Zhang, M.; Yao, Q.; Lu, C.; Li, Z.; Wang, W. (2014) Layered double hydroxide–carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Applications Materials Interfaces, 6 (22): 20225–20233.
  • Liu, F.; Zhang, W.; Chen, W.; Wang, J.; Yang, Q.; Zhu, W.; Wang, J. (2017) One-pot synthesis of NiFe2O4 integrated with EDTA-derived carbon dots for enhanced removal of tetracycline. Chemical Engineering Journal, 310: 187–196.
  • Liu, Y.; Ma, Y.J.; Liu, C.Y.; Zhang, Z.Y.; Yang, W.D.; Nie, S.D.; Zhou, X.H. (2016) The effective removal of Cr (VI) ions by carbon dot–silica hybrids driven by visible light. RSC Advancement, 6 (72): 68530–68537.
  • Aji, M.P.; Wiguna, P.A.; Karunawan, J.; Wati, A.L. (2017) Removal of heavy metal nickel-ions from wastewaters using carbon nanodots from frying oil. Procedia Engineering, 170: 36–40.
  • Yang, T.; Li, Y.K.; Chen, M.L.; Wang, J.H. (2015) Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal. Chinese Chemical Letters, 26 (12): 1496–1501.
  • Wang, L.; Cheng, C.; Tapas, S.; Lei, J.; Matsuoka, M.; Zhang, J.; Zhang, F. (2015) Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2, 4-dichlorophenol and heavy metal ions. Journal of Materials Chemical A, 3 (25): 13357–13364.
  • Cheng, C.; Tan, X.; Lu, D.; Wang, L.; Sen, T.; Lei, J.; El‐Toni, A.M.; Zhang, J.; Zhang, F.; Zhao, D. (2015) Carbon‐Dot‐Sensitized, Nitrogen‐Doped TiO2 in Mesoporous Silica for Water Decontamination through Nonhydrophobic Enrichment–degradation Mode. Chemical European Journal, 21 (49): 17944–17950.
  • Sansuk, S.; Srijaranai, S.; Srijaranai, S. (2016) A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environmental Science & Technology, 50 (12): 6477–6484.
  • Liu, X.J.; Guo, M.L.; Huang, J.; Yin, X.Y. (2013) Improved fluorescence of carbon dots prepared from bagasse under alkaline hydrothermal conditions. BioResource, 8 (2): 2537–2546.
  • Bedin, K.C.; Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Almeida, V.C. (2016) KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286: 476–484.
  • Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials: the Official Journal of the International Zeolite Association, 243: 291–300.
  • Kan, Y.; Yue, Q.; Gao, B.; Li, Q. (2016) Comparison of activated carbons from epoxy resin of waste printed circuit boards with KOH activation by conventional and microwave heating methods. Journal of Taiwan Institute Chemical Engineering, 68: 440–445.
  • Obiageli, A.R. (2017) Adsorption of cationic dye onto low-cost adsorbent synthesized from bentonite clay part I. kinetic and thermodynamic studies. Journal of Chemical Technology & Metallurgy, 52: 3.
  • Langmuir, I. (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of American Chemical Society, 39 (9): 1848–1906.
  • Freundlich, H.M.F. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57 (385471): 1100–1107.
  • Amin, N.K. (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165 (1): 52–62.
  • Dutta, D.; Thakur, D.; Bahadur, D. (2015) SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chemical Engineering Journal, 281: 482–490.
  • Wu, F.C.; Tseng, R.L.; Juang, R.S. (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150 (2): 366–373.
  • Mittal, H.; Ballav, N.; Mishra, S.B. (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution. Journal of Industrial Engineering Chemistry, 20 (4): 2184–2192.
  • Dutta, D.; Thiyagarajan, S.; Bahadur, D. (2016) SnO2 quantum dots decorated reduced graphene oxide nanocomposites for efficient water remediation. Chemical Engineering Journal, 297: 55–65.
  • Kim, K.C.; Yoon, T.U.; Bae, Y.S. (2016) Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Materials, 224: 294–301.
  • Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry. Chimie Pure Et Appliquee, 87 (9–10): 1051–1069.
  • Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S. (2013) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic press. ISBN: 9780080970363(ebook); ISBN: 9780080970356(Hardcover) Imprint: Academic Press Published Date: 1st October 2013
  • Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. (2012) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Vol. 16; Springer Science & Business Media.
  • Thommes, M.; Cychosz, K.A. (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption, 20 (2–3): 233–250.
  • Sethia, G.; Sayari, A. (2016) Activated carbon with optimum pore size distribution for hydrogen storage. Carbon, 99: 289–294.
  • Regmi, P.; Moscoso, J.L.G.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109: 61–69.
  • Bourlinos, A.B.; ZbořIl, R.; Petr, J.; Bakandritsos, A.; Krysmann, M.; Giannelis, E.P. (2011) Luminescent surface quaternized carbon dots. Chemical Materials, 24 (1): 6–8.
  • Unur, E. (2013) Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Microporous Mesoporous Materials, 168: 92–101.
  • Li, M.; Li, W.; Liu, S. (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydrate Research, 346 (8): 999–1004.
  • Huang, Y.; Ma, E.; Zhao, G. (2015) Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Industrial Crops Products, 69: 447–455.
  • Bandi, R.; Gangapuram, B.R.; Dadigala, R.; Eslavath, R.; Singh, S.S.; Guttena, V. (2016) Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 6 (34): 28633–28639.
  • Mewada, A.; Pandey, S.; Thakur, M.; Jadhav, D.; Sharon, M. (2014) Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. Journal of Materials Chemical B, 2 (6): 698–705.
  • Trakal, L.; Šigut, R.; Šillerová, H.; Faturíková, D.; Komárek, M. (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arabian Journal Chemical, 7 (1): 43–52.
  • Jin, H.; Hanif, M.U.; Capareda, S.; Chang, Z.; Huang, H.; Ai, Y. (2016) Copper (II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4 (1): 365–372.
  • Teng, H.; Wang, S.C. (2000) Preparation of porous carbons from phenol–formaldehyde resins with chemical and physical activation. Carbon, 38 (6): 817–824.
  • Quan, C.; Li, A.; Gao, N. (2010) Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. Journal of Hazardous Materials, 179 (1): 911–917.
  • Thomsen, C.; Reich, S.; Maultzsch, J. (2004) Resonant Raman spectroscopy of nanotubes. Philos. Trans. R. Soc. London. Series A, 362 (1824): 2337–2359.
  • Thambiraj, S.; Shankaran, R. (2016) Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applications Surf Sciences, 390: 435–443.
  • Du, F.; Zhang, M.; Li, X.; Li, J.; Jiang, X.; Li, Z.; Hua, Y.; Shao, G.; Jin, J.; Shao, Q.; Zhou, M. (2014) Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology, 25 (31): 315702.
  • Hameed, B.H. (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. Journal of Hazardous Materials, 161 (2): 753–759.
  • Costa, J.A.S.; De Jesus, R.A.; Da Silva, C.M.P.; Romão, L.P.C. (2017) Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technology, 308: 434–441.
  • Costa, J.A.; Garcia, A.C.; Santos, D.O.; Sarmento, V.H.; De Mesquita, M.E.; Romão, L.P. (2015) Applications of inorganic–organic mesoporous materials constructed by self-assembly processes for removal of benzo [k] fluoranthene and benzo [b] fluoranthene. Journal Sol-Gel Sciences Technology, 75 (3): 495–507.
  • Liu, D.; Wu, Z.; Ge, X.; Cravotto, G.; Wu, Z.; Yan, Y. (2016) Comparative study of naphthalene adsorption on activated carbon prepared by microwave-assisted synthesis from different typical coals in Xinjiang. Journal of Taiwan Institute Chemical Engineering, 59: 563–568.
  • Valderrama, C.; Gamisans, X.; De Las Heras, X.; Farran, A.; Cortina, J.L. (2008) Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients. Journal of Hazardous Materials, 157 (2): 386–396.
  • Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9): 1361–1403.
  • Li, L.; Quinlivan, P.A.; Knappe, D.R. (2005) Predicting adsorption isotherms for aqueous organic micro pollutants from activated carbon and pollutant properties. Environmental Science & Technology, 39 (9): 3393–3400.
  • Wong, Y.C.; Szeto, Y.S.; Cheung, W.; McKay, G. (2004) Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Processing Biochemistry, 39 (6): 695–704.
  • Ion, A.C.; Ion, I.; Culetu, A. (2011) Adsorption of naphthalene onto carbonic nanomaterial graphitic nanoplatelets in aqueous solutions. U.P.B. Sci. Bull., Series B:. Chemical Materials Sciences, 73 (2): 55–66.
  • Sun, Y.; Yang, S.; Zhao, G.; Wang, Q.; Wang, X. (2013) Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chemical Asian Journal, 8 (11): 2755–2761.
  • Tempkin, M.I.; Pyzhev, V. (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physical Chimica USSR, 12 (1): 327.
  • Aksu, Z. (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption by C. Vulgaris in a batch system: effect of temperature. Separation & Purification Technology, 21 (3): 285–294.
  • Günay, A.; Arslankaya, E.; Tosun, I. (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146 (1): 362–371.
  • Ge, X.; Tian, F.; Wu, Z.; Yan, Y.; Cravotto, G.; Wu, Z. (2015) Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: microwave power effects. Chemical Engineering Processing-Processing Intensification, 91: 67–77.
  • Ge, X.; Wu, Z.; Wu, Z.; Yan, Y.; Cravotto, G.; Ye, B.C. (2016) Enhanced PAHs adsorption using iron-modified coal-based activated carbon via microwave radiation. Journal of Taiwan Institute Chemical Engineering, 64: 235–243.
  • Cheung, C.W.; Porter, J.F.; McKay, G. (2000) Elovich equation and modified second‐order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technological Biotechnology, 75 (11): 963–970.
  • Teng, H.; Hsieh, C.T. (1999) Activation energy for oxygen chemisorption on carbon at low temperatures. Industrial Engineering Chemical Research, 38 (1): 292–297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.