184
Views
7
CrossRef citations to date
0
Altmetric
Membrane

Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 143-152 | Received 15 Nov 2017, Accepted 17 Jul 2018, Published online: 30 Jul 2018

References

  • Coman, V.; Robotin, B.; Ilea, P. (2013) Nickel recovery/removal from industrial wastes: A review. Resources, Conservation and Recycling, 73: 229–238. doi:10.1016/j.resconrec.2013.01.019
  • Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118 (1–2): 83–98. doi:10.1016/j.cej.2006.01.015
  • Fu, F.; Wang, Q. (2011) Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3): 407–418. doi.org/10.1016/j.jenvman.2010.11.011
  • Saçmaci, Ş.; Kartal, Ş.; Saçmaci, M.; Soykan, C. (2011) Novel solid phase extraction procedure for some trace elements in various samples prior to their determinations by FAAS. Bulletin of the Korean Chemical Society, 32 (2): 444–450. doi:10.5012/bkcs.2011.32.2.444
  • Yilmaz, V.; Hazer, O.; Kartal, Ş. (2013) Synthesis, characterization and application of a novel ion-imprinted polymer for selective solid phase extraction of copper(II) ions from high salt matrices prior to its determination by FAAS. Talanta, 116: 322–329. doi:10.1016/j.talanta.2013.05.047
  • Liu, F.; Zhang, G.; Meng, Q.; Zhang, H. (2008) Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chinese Journal of Chemical Engineering, 16 (3): 441–445. doi:10.1016/S1004-9541(08)60102-0
  • Ku, Y.; Chen, S.-W.; Wang, W.-Y. (2005) Effect of solution composition on the removal of copper ions by nanofiltration. Separation and Purification Technology, 43 (2): 135–142. doi:10.1016/j.seppur.2004.10.011
  • Wu, D., et al. (2016) Use of nanofiltration to reject cobalt (II) from ammoniacal solutions involved in absorption of SO2/NOx. Chemical Engineering Science, 145: 97–107. doi:10.1016/j.ces.2016.02.014
  • Suárez, L.; Diez, M.A.; García, R.; Riera, F.A. (2013) Recovery of Na4EDTA from aqueous solutions using nanofiltration. Separation and Purification Technology, 118: 144–150. doi:10.1016/j.seppur.2013.06.046
  • Diallo, H.; Rabiller-Baudry, M.; Khaless, K.; Chaufer, B. (2013) On the electrostatic interactions in the transfer mechanisms of iron during nanofiltration in high concentrated phosphoric acid. Journal of Membrane Science, 427: 37–47. doi:10.1016/j.memsci.2012.08.047
  • Lin, S.; Wang, T.; Juang, R. (2005) Metal rejection by nanofiltration from diluted solutions in the presence of complexing agents. Separation Science and Technology, 39 (2): 363–376. doi:10.1081/SS-120027563
  • Sorin, A., et al. (2005) Rejection of Gd(III) by nanofiltration assisted by complexation on charged organic membrane: influences of pH, pressure, flux, ionic strength and temperature. Journal of Membrane Science, 267 (1–2): 41–49. doi:10.1016/j.memsci.2005.05.022
  • Favre-Réguillon, A.; Sorin, A.; Pellet-Rostaing, S.; Bernier, G.; Lemaire, M. (2007) Nanofiltration assisted by complexation: A promising process for the separation of trivalent long-lived minor actinides from lanthanides. Comptes Rendus Chimie, 10 (10–11): 994–1000. doi:10.1016/j.crci.2007.01.012
  • Szöke, S.; Pátzay, G.; Weiser, L. (2005) Cobalt(III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration. Desalination, 175 (2): 179–185.
  • Poriel, L.; Chitry, F.; Pellet-Rostaing, S.; Lemaire, M.; Favre-Réguillon, A. (2006) Zirconium and hafnium separation, part 3. Ligand-enhanced separation of zirconium and hafnium from aqueous solution using nanofiltration. Separation Science and Technology, 41 (13): 2883–2893. doi:10.1080/01496390600725810
  • Koseoglu, H.; Kitis, M. (2009) The recovery of silver from mining wastewaters using hybrid cyanidation and high-pressure membrane process. Minerals Engineering, 22 (5): 440–444. doi:10.1016/j.mineng.2008.11.006
  • Balanyà, T.; Labanda, J.; Llorens, J.; Sabaté, J. (2009) Separation of metal ions and chelating agents by nanofiltration. Journal of Membrane Science, 345 (1–2): 31–35. doi:10.1016/j.memsci.2009.08.009
  • Marcus, Y. (1997) Ion Properties, 6th ed.; Marcel Dekker: New York.
  • Advanced Chemistry Development ACD/ChemSketch. Available at: http://www.acdlabs.com/resources/freeware/chemsketch/. [Accessed May 3, 2018].
  • Koch membrane koch membranes technical information. Available at: http://www.kochmembrane.com/PDFs/Data-Sheets/Spiral/NF/KMS_SelRO_MPS_36_2540_4040_Datasheet.aspx [Accessed October 7, 2016].
  • Sabaté, J.; Labanda, J.; Llorens, J. (2009) Influence of coion and counterion size on multi-ionic solution nanofiltration. Journal of Membrane Science, 345: 298–304. doi:10.1016/j.memsci.2009.09.013
  • Bowen, W.R.; Welfoot, J.S.; Williams, P.M. (2002) Linearized transport model for nanofiltration: development and assessment. AIChE Journal. American Institute of Chemical Engineers, 48 (4): 760–773. doi.org/10.1002/aic.690480411
  • Cavaco Morão, A.I.; Szymczyk, A.; Fievet, P.; Brites Alves, A.M. (2008) Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process. Journal of Membrane Science, 322 (2): 320–330. doi:10.1016/j.memsci.2008.06.003
  • Déon, S.; Dutournié, P.; Bourseau, P. (2007) Modeling nanofiltration with Nernst-Planck approach and polarization layer. AIChE Journal. American Institute of Chemical Engineers, 53 (8): 1952–1969. doi.org/10.1002/aic.11207
  • Déon, S.; Dutournié, P.; Limousy, L.; Bourseau, P. (2011) The two-dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: model validation. AIChE Journal. American Institute of Chemical Engineers, 57 (4): 985–995. doi:10.1002/aic.12330
  • Silva, V., et al. (2011) Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range. Desalination, 277 (1–3): 29–39.
  • Bandini, S.; Vezzani, D. (2003) Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chemical Engineering Science, 58 (15): 3303–3326. doi:10.1016/S0009-2509(03)00212-4
  • Fievet, P., et al. (2002) Electrolyte transport through amphoteric nanoÿltration membranes. Chemical Engineering Science, 57: 2921–2931.
  • Palmeri, J., et al. (2002) Modeling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program. Desalination. 147 (1–3): 231–236. doi.org/10.1016/S0011-9164(02)00541-6
  • Lefebvre, X., et al. (2003) Nanofiltration modeling: A comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program nanoflux. Separation and Purification Technology, 32 (1–3): 117–126. doi:10.1016/S1383-5866(03)00076-5
  • Saliha, B.; Patrick, F.; Anthony, S. (2009) Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model. Chemical Engineering Science, 64 (17): 3789–3798. doi:10.1016/j.ces.2009.05.020
  • Pages, N.; Yaroshchuk, A.; Gibert, O.; Cortina, J.L. (2013) Rejection of trace ionic solutes in nanofiltration: influence of aqueous phase composition. Chemical Engineering Science, 104: 1107–1115. doi:10.1016/j.ces.2013.09.042
  • Wang, K.Y.; Chung, T.S. (2006) Polybenzimidazole nanofiltration hollow fiber for cephalexin separation. AIChE Journal. American Institute of Chemical Engineers, 52 (4): 1363–1377. doi:10.1002/aic.10741
  • Yaroshchuk, A.E. (2008) Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 139 (1–2): 150–173. doi:10.1016/j.cis.2008.01.004
  • Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. (2008) Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152 (1): 1–31. doi:10.1016/j.jhazmat.2007.10.043
  • OLI Systems OLI systems. OLI Studio: stream Analyzer software. Available at: http://www.olisystems.com/. [Accessed October 7, 2016].
  • Helgeson, H.C.; Kirkham, D.H. (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent. American Journal of Science, 274 (10): 1089–1198. doi:10.2475/ajs.274.10.1089
  • Helgeson, H.C.; Kirkham, D.H. (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, 274 (10): 1199–1261. doi:10.2475/ajs.274.10.1199
  • Helgeson, H.C.; Kirkham, D.H. (1976) Theoretical prediction of the thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution. American Journal of Science, 276 (10): 97–240. doi:10.2475/ajs.276.2.97
  • Helgeson, H.C.; Kirkham, D.H.; Flowers, G.C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600oC. American Journal of Science, 281 (10): 1249–1516. doi:10.2475/ajs.281.10.1249
  • Sillen, L.G.; Martell, A.E. (1971) Stability Constants of Metal-Ion Complexes. Special Publication N°25, 1st ed.; The Chemical Society: London.
  • Baes, C.F.J.; Mesmer, R.E. (1976) The Hydrollysis of Cations, 1st ed.; John Wiley and Sons, Inc.: New York.
  • Bardot, C.; Gaubert, E.; Yaroshchuk, A.E. (1995) Unusual mutual influence of electrolytes during pressure-driven transport of their mixtures across charged porous membranes. Journal of Membrane Science, 103 (1–2): 11–17. doi:10.1016/0376-7388(94)00300-N
  • Szymczyk, A., et al. (2003) Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes. Advances in Colloid and Interface Science, 103 (1): 77–94. doi:10.1016/S0001-8686(02)00094-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.