408
Views
43
CrossRef citations to date
0
Altmetric
Adsorption

Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron

ORCID Icon, & ORCID Icon
Pages 13-26 | Received 25 Nov 2017, Accepted 23 Jul 2018, Published online: 06 Aug 2018

References

  • Huang, W.; Wang, S.; Zhu, Z.; Li, L.; Yao, X.; Rudolph, V.; Haghseresht, F. (2008) Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158: 35–42. doi:10.1016/j.jhazmat.2008.01.061
  • Ye, J.; Cong, X.; Zhang, P.; Zeng, G.; Hoffmann, E.; Wu, Y.; Zhang, H.; Fang, W. (2016) Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud. Journal of Molecular Liquids, 216: 35–41. doi:10.1016/j.molliq.2016.01.020
  • Krishnan, K.A.; Haridas, A. (2008) Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152 (2): 527–535. doi:10.1016/j.jhazmat.2007.07.015
  • Deng, H.; Yu, X. (2012) Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chemical Engineering Journal, 184: 205–212. doi:10.1016/j.cej.2012.01.031
  • Benyoucef, S.; Amrani, M. (2011) Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination, 275: 231–236. doi:10.1016/j.desal.2011.03.004
  • Ding, W.; Bai, S.; Mu, H.; Naren, G. (2017) Investigation of phosphate removal from aqueous solution by both coal gangues. Water Science & Technology, In press. doi:10.2166/wst.2017.241
  • Wen, Z.; Zhang, Y.; Dai, C. (2014) Removal of phosphate from aqueous solution using nanoscalezerovalent iron (nZVI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457: 433–440. doi:10.1016/j.colsurfa.2014.06.017
  • Huang, X.; Liao, X.; Shi, B. (2009) Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 166: 1261–1265. doi:10.1016/j.jhazmat.2008.12.045
  • Ye, J.; Zhang, P.; Hoffmann, E.; Zeng, G.; Tang, Y.; Dresely, J.; Liu, Y. (2014) Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption. Water, Air, and Soil Pollution, 225: 2225. doi:10.1007/s11270-014-2225-1
  • Zhang, Y.; Pan, B. (2014) Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chemical Engineering Journal, 249: 111–120. doi:10.1016/j.cej.2014.03.073
  • Lalley, J.; Han, C.; Li, X.; Dionysiou, D.; Nadagouda, M. (2016) Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284: 1386–1396. doi:10.1016/j.cej.2015.08.114
  • Diaconu, E.; Orbuleţ, O.; Miron, A.; Modrogan, C. (2010) Forecasting the sorption of phosphates in soil with artificial neural networks. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72 (3): 175–182.
  • Banerjee, S.; Mukherjee, S.; LaminKa-ot, A.; Joshi, S.; Mandal, T.; Halder, G. (2016) Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. Journal of Advanced Research, 7 (5): 597–610. doi:10.1016/j.jare.2016.06.002
  • Bezbaruah, A.N.; Krajangpan, S.; Chisholm, B.J.; Khan, E.; Bermudez, J.E. (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166 (2–3): 1339–1343. doi:10.1016/j.jhazmat.2008.12.054
  • Chen, S.; Hsu, H.-D.; Li, C.-W. (2004) A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research, 6 (6): 639–647. doi:10.1007/s11051-004-6672-2
  • Wu, D.; Shen, Y.; Ding, A.; Qiu, M.; Yang, Q.; Zheng, S. (2013) Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environmental Technology, 34 (18): 2663–2669. doi:10.1080/09593330.2013.786103
  • Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.; Lowry, G. (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41: 284–290. doi:10.1021/es061349a
  • Benerjee, A.; Nayan, D.; Lahiri, S. (2007) A new method of synthesis of iron doped calcium alginate beads and determination of iron content by radiometric method. Biochemical Engineering Journal, 33 (3): 260–262. doi:10.1016/j.bej.2006.11.005
  • Fawzy, M.; Nasr, M.; Nagy, H.; Helmi, S. (2018) Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste. Environmental Science and Pollution Research, 25 (6): 5875–5888. doi:10.1007/s11356-017-0922-1
  • Demuth, H.; Beale, M.; Hagan, M. (2007) Neural Network Toolbox 5: Users Guide; The MathWorks Inc: Natick, MA.
  • Liu, X.; Zhang, L. (2015) Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technology, 277: 112–119. doi:10.1016/j.powtec.2015.02.055
  • Li, L.; Fan, M.H.; Brown, R.C.; Van Leeuwen, J.H.; Wang, J.J.; Wang, W.H.; Song, Y.H.; Zhang, P.Y. (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Critical Reviews in Environmental Science and Technology, 36: 405–431. doi:10.1080/10643380600620387
  • Veglio, F.; Esposito, A.; Reverberi, A. (2002) Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy, 65 (1): 43–57. doi:10.1016/S0304-386X(02)00064-6
  • Alexander, L.; Klug, H. (1950) Determination of crystallite size with the X-ray spectrometer. Journal of Applied Physics, 21: 137–142. doi:10.1063/1.1699612
  • Nasr, M.; Mahmoud, A.; Fawzy, M.; Radwan, A. (2017) Artificial intelligence modeling of cadmium(II) biosorption using rice straw. Applied Water Science, 7 (2): 823–831. doi:10.1007/s13201-015-0295-x
  • Fan, J.; Guo, Y.; Wang, J.; Fan, M. (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166 (2–3): 904–910. doi:10.1016/j.jhazmat.2008.11.091
  • Yan, H.; Yang, H.; Li, A.; Cheng, R. (2016) pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chemical Engineering Journal, 284: 1397–1405. doi:10.1016/j.cej.2015.06.030
  • Frost, R.; Scholz, R.; López, A.; Xi, Y. (2014) A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++Mg2Al2(PO4)4(OH)2·8(H2O). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 243–248. doi:10.1016/j.saa.2014.01.053
  • Anirudhan, T.S.; Noeline, B.F.; Manohar, D.M. (2006) Phosphate removal from wastewaters using a weak anion exchanger prepared from a lignocellulosic residue. Environmental Science and Technology, 40 (8): 2740–2745.
  • Chouyyok, W.; Wiacek, R.; Pattamakomsan, K.; Sangvanich, T.; Grudzien, R.; Fryxell, G. (2010) Phosphate removal by anion binding on functionalized nanoporous sorbents. Environmental Science and Technology, 44 (8): 3073–3078. doi:10.1021/es100787m
  • Kanel, S.; Manning, B.; Charlet, L.; Choi, H. (2005) Removal of arsenic (III) fromgroundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39: 1291–1298. doi:10.1021/es048991u
  • Xiong, J.; He, Z.; Mahmood, Q.; Liu, D.; Yang, X.; Islam, E. (2008) Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152 (1): 211–215. doi:10.1016/j.jhazmat.2007.06.103
  • Cao, D.; Jin, X.; Gan, L.; Wang, T.; Chen, Z. (2016) Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere, 159: 23–31. doi:10.1016/j.chemosphere.2016.05.080
  • Li, Y.; Liu, C.; Luan, Z.; Peng, X.; Zhu, C.; Chen, Z.; Zhang, Z.; Fan, J.; Jia, Z. (2006) Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials, B137 (1): 374–383. doi:10.1016/j.jhazmat.2006.02.011
  • Saruchi, K.V. (2016) Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, In Press. doi:10.1016/j.arabjc.2016.11.009
  • Langmuir, I.; Waugh, D. (1940) Pressure-soluble and pressure-displaceable components of monolayers of native and denatured proteins. Journal of the American Chemical Society, 62 (10): 2771–2793. doi:10.1021/ja01867a046
  • Freundlich, F. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57: 385–470.
  • Garson, D. (1991) Interpreting neural network connection weights. Artificial Intelligence Expert, 6 (7): 47–51.
  • Alalm, M.; Nasr, M. (2018) Artificial intelligence, regression model, and cost estimation for removal of chlorothalonil pesticide by activated carbon prepared from casuarina charcoal. Sustainable Environment Research, 28 (3): 101–110. doi:10.1016/j.serj.2018.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.