167
Views
2
CrossRef citations to date
0
Altmetric
Adsorption

Magnetic composite adsorbents of phenolic compounds with superior corrosion resistance

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2252-2273 | Received 21 May 2018, Accepted 30 Oct 2018, Published online: 04 Dec 2018

References

  • Michałowicz, J.; Duda, W. (2007) Phenol – sources and toxicity. Polish Journal of Environment Studies, 16 (3): 347–362.
  • Kavlock, R.J.; Oglesby, L.A.; Hall, L.L.; Fisher, H.L.; Copeland, F.; Logsdon, T.; Ebron-McCoy, M. (1991) In vivo and in vitro structure-dosimetry-activity relationships of substituted phenols in developmental toxicity assays. Fundament Applications Toxicogical, 16: 225–229. doi:10.1016/0272-0590(91)90106-E.
  • Sivasubramanian, S.; Karthick Raja, N.S. (2015) Phenol degradation studies using microbial consortium isolated from environmental sources. Journal Environment Chemical Engineering, 3: 243–252. doi:10.1016/j.jece.2014.12.014.
  • Watanabe, K.; Hino, S.; Takahashi, N. (1996) Responses of activated sludge to an increase in phenol loading. Journal Ferm Bioengineering, 82 (5): 522–524. doi:10.1016/S0922-338X(97)86998-X.
  • Ping Cheng, W.; Gao, W.; Cui, X.; Hong, M.J.; Feng, L.R. (2016) Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. Journal Taiwan Institute Chemical Engineering, 62: 192–198. doi:10.1016/j.jtice.2016.02.004.
  • Ma, L.; Zhua, J.; Xib, Y.; Zhu, R.; Hea, H.; Lianga, X.;, et al. (2016) Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: a comparative study of single and multiple solute. Colloida Surface A: Physicochem Engineering Aspects, 497: 63–71. doi:10.1016/j.colsurfa.2016.02.032.
  • Zhang, D.; Huo, P.; Liu, W. (2016) Behavior of phenol adsorption on thermal modified activated carbon. Chinese Journal Chemical Engineering, 24: 446–452. doi:10.1016/j.cjche.2015.11.022.
  • Chaouati, N.; Soualah, A.; Chater, M. (2013) Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation. C. R. Chimie, 16: 222–228. doi:10.1016/j.crci.2012.10.010.
  • Yousef, R.I.; El-Eswed, B.; Al-Muhtase, A.H. (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism and thermodynamics studies. Chemical Engineering Journal, 17: 1143–1149. doi:10.1016/j.cej.2011.05.012.
  • Schmitt, D.; Beiser, N.; Regenbrecht, C.; Zirbes, M.; Waldvogel, S.R. (2017) Adsorption and separation of black liquor-derived phenol derivatives using anion exchange resins. Separation Purification Technological, 181: 8–17. doi:10.1016/j.seppur.2017.03.004.
  • Soto, M.L.; Moure, A.; Domínguez, H.; Parajo, J.C. (2017) Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins. Journal Food Engineering, 209: 52–60. doi:10.1016/j.jfoodeng.2017.04.008.
  • Wu, Z.; Meng, Y.; Zhao, D. (2010) Nanocasting fabrication of ordered mesoporous phenol–formaldehyde resins with various structures and their adsorption performances for basic organic compounds. Microporous and Mesoporous Material, 128: 165–179. doi:10.1016/j.micromeso.2009.08.020.
  • Strachowski, P.; Bystrzejewski, M. (2015) Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon. Colloida Surface A: Physicochem Engineering Aspects, 467: 113–123. doi:10.1016/j.colsurfa.2014.11.044.
  • Thue, P.S.; Adebayo, M.A.; Lima, E.C.; Sieliechi, J.M.; Machado, F.M.; Dotto, G.L.;, et al. (2016) Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol fromaqueous solution. Journal Molecular Liquid, 223: 1067–1080. doi:10.1016/j.molliq.2016.09.032.
  • Álvarez-Torrellas, S.; Martin-Martinez, M.; Gomes, H.T.; Ovejero, G.; García, J. (2017) Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Applications Surf Sciences, 414: 424–434. doi:10.1016/j.apsusc.2017.04.054.
  • Karunarathne, H.D.S.S.; Amarasinghe, B.M.W.P.K. (2013) Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse. Energy Procedia, 34: 83–90. doi:10.1016/j.egypro.2013.06.736.
  • Alhamed, Y.A.;. (2009) Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones. Journal of Hazardous Materials, 170: 763–770. doi:10.1016/j.jhazmat.2009.05.002.
  • Pan, Y.; Li, Z.; Zhang, Z.; Tong, X.; Li, H.; Jia, C.;, et al. (2016) Adsorptive removal of phenol from aqueous solution with zeoliticimidazolate framework-67. Journal of Environmental Management, 169: 167–173. doi:10.1016/j.jenvman.2015.12.030.
  • Xiao, G.; Wen, R.; You, P.; Wu, D. (2017) Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: effect of hydrogen bonding receptor in micropores on adsorption capacity. Microporous Mesoporous Material, 239: 40–44. doi:10.1016/j.micromeso.2016.09.044.
  • El, A.; Salam, H.M.; Younis, S.A.; Ali, H.R.; Zaki, T. (2017) Statistical modeling and optimization of phenol adsorption from water by modified Cu3(BTC)2: kinetic, isotherm, and thermodynamic analysis. Microporous Mesoporous Material, 241: 210–217. doi:10.1016/j.micromeso.2016.12.010.
  • Zhang, S.; Sun, F.; Zhu, G. (2017) Porous aromatic framework as an efficient adsorbent in removing phenol from water. Inorganic Chemical Communicable, 85: 110–112. doi:10.1016/j.inoche.2017.08.009.
  • Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.;, et al. (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal Hazardous Material, 305: 156–163. doi:10.1016/j.jhazmat.2015.11.047.
  • Wan, J.; Deng, H.; Shi, J.; Zhou, L.; Su, T. (2014) Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal. Clean - Soil, Air, Water, 42 (9): 1199–1207. doi:10.1002/clen.v42.9.
  • Ai, L.; Huang, H.; Chen, Z.; Wei, X.; Jiang, J. (2010) Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chemical Engineering Journal, 156: 243–249. doi:10.1016/j.cej.2009.08.028.
  • Oliveira, L.C.A.; Rios, R.V.R.A.; Fabris, J.D. (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 40: 2177–2183. doi:10.1016/S0008-6223(02)00076-3.
  • Wu, J.; Zhao, H.; Chen, R.; Pham-Huy, C.; Hui, X.; He, H. (2016) Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater. Journal Chromatog B, 1029–1030: 106–112. doi:10.1016/j.jchromb.2016.07.018.
  • Sun, Y.; Tian, J.; Wang, L.; Yan, H.; Qiao, F.; Qiao, X. (2015) One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water. Journal Chromatog A, 1422: 53–59. doi:10.1016/j.chroma.2015.10.035.
  • Chen, C.; Hu, J.; Shao, D.; Li, J.; Wang, X. (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal Hazardous Material, 164: 923–928. doi:10.1016/j.jhazmat.2008.08.089.
  • Peng, X.; Luan, Z.; Di, Z.; Zhang, Y.; Zhu, C. (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon, 43: 855–894. doi:10.1016/j.carbon.2004.11.009.
  • Bystrzejewski, M.; Łabędź, O.; Kaszuwara, W.; Huczko, A.; Lange, H. (2013) Controlling the diameter and magnetic properties of carbon-encapsulated iron nanoparticles produced by carbon arc discharge. Powder Technological, 246: 7–15. doi:10.1016/j.powtec.2013.04.052.
  • Bystrzejewski, M.; Pyrzyńska, K. (2013) Enhancing the efficiency of AuCl4- ion removal from aqueous solution using activated carbon and carbon nanomaterials. Mat Chemical Physical, 141: 454–460. doi:10.1016/j.matchemphys.2013.05.044.
  • Fronczak, M.; Łabędź, O.; Kaszuwara, W.; Bystrzejewski, M. (2018) Corrosion resistance studies of carbon-encapsulated iron nanoparticles. Journal Materials Sciences, 53: 3805–3816. doi:10.1007/s10853-017-1793-z.
  • Zargar, B.; Parham, H.; Rezazade, M. (2011) Fast removal and recovery of methylene blue by activated carbon modified with magnetic iron oxide nanoparticles. Journal Chinese Chemical Social, 58: 694–699. doi:10.1002/jccs.201190108.
  • Ferrari, A.C.; Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Physical Reviews B, 61 (20): 14095–14107. doi:10.1103/PhysRevB.61.14095.
  • Zolkin, A.; Semerikova, A.; Chepkasov, S.; Khomyakov, M. (2017) Characteristics of the Raman spectra of diamond-like carbon films. Influence of methods of synthesis. Materials Today: Proceedings, 4: 11480–11485.
  • Strachowski, P.; Kaszuwara, W.; Bystrzejewski, M. (2017) A novel magnetic composite adsorbent of phenolic compounds based on waste poly(ethylene terephthalate) and carbon-encapsulated magnetic nanoparticles. New Journal Chemical, 41: 12617–12630. doi:10.1039/C7NJ01818E.
  • Khalil, K.M.S.; Allam, O.A.S.; Khairy, M.; Mohammed, K.M.H.; Elkhatib, R.M.; Hamed, M.A. (2017) High surface area nanostructured activated carbons derived from sustainable sorghum stalk. Journal Molecular Liquid, 247: 386–396. doi:10.1016/j.molliq.2017.09.090.
  • Mihoc, G.; Ianoş, R.; PăCurariu, C. (2014) Adsorption of phenol and p-chlorophenol from aqueous solutions by magnetic nanopowder. Water Science and Technology : a Journal of the International Association on Water Pollution Research, 69 (2): 385–391. doi:10.2166/wst.2013.727.
  • Mu’azu, N.D.; Jarrah, N.; Zubair, M.; Alagha, O. (2017) Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. International Journal Environment Researcher Public Health, 14: 1094. doi:10.3390/ijerph14101094.
  • National Center for Biotechnology Information. PubChem compound database. CID=996, https://pubchem.ncbi.nlm.nih.gov/compound/996 ( accessed Nov. 23, 2017).
  • Li, H.; Ali Mahyoub, S.A.; Liao, W.; Xia, S.; Zhao, H.; Guo, M.;, et al. (2017) Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technology, 223: 20–26. doi:10.1016/j.biortech.2016.10.033.
  • Istratie, R.; Stoia, M.; Pacurariu, C.; Locovei, C. (2016) Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arabian Journal Chemical. doi:10.1016/j.arabjc.2015.12.012.
  • Yin, J.; Chen, R.; Ji, Y.; Zhao, C.; Zhao, G.A.; Zhang, H. (2010) Adsorption of phenols by magnetic polysulfone microcapsules containing tributyl phosphate. Chemical Engineering Journal, 157: 466–474. doi:10.1016/j.cej.2009.12.008.
  • Wang, X.;. (2011) Preparation of magnetic hydroxyapatite and their use as recyclable adsorbent for phenol in wastewater. Clean-Soil, Air, Water, 39 (1): 13–20. doi:10.1002/clen.v39.1.
  • Mirbagheri, N.S.; Sabbaghi, S. (2018) A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous Mesoporous Material. doi:10.1016/j.micromeso.2017.10.007.
  • Borah, D.; Bharali, D.K.; Morris, M.A. (2017) Lignocellulosic-based activated carbon prepared by a chemical impregnation method as electrode materials for double layer capacitor. Advancement Chemical Engineering Sciences, 7: 175–190. doi:10.4236/aces.2017.72013.
  • Erdem, M.; Orhan, R.; Sahin, M.; Aydim, E. (2016) Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2 activation and investigation of its rifampicine removal capability. Water Air Soil Pollut, 227: 226.
  • Mohamed, E.F.; Andriantsiferana, C.; Wilhelm, A.M.; Delmas, H. (2011) Competitive adsorption of phenolic compounds from aqueous solution using sludge‐based activated carbon. Environment Technological, 32 (12): 1325–1336. doi:10.1080/09593330.2010.536783.
  • Ruiying, G.; Jianglong, W. (2007) Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge. Journal Hazardous Materials, 145: 398–403. doi:10.1016/j.jhazmat.2006.11.036.
  • Li, W.; Yan, J.; Yan, Z.; Song, Y.; Jiao, W.; Qi, G.; Liu, Y. (2018) Adsorption of phenol by activated carbon in rotating packed bed: experiment and modeling. Applications Thermal Engineering, 142: 760–766. doi:10.1016/j.applthermaleng.2018.07.051.
  • Hank, D.; Ani, Z.; Ait Hocine, S.; Chaalal, O.; Hellal, A. (2014) Optimization of phenol adsorption onto bentonite by factorial design methodology. Journal Industrial Engineering Chemical, 20: 2256–2263. doi:10.1016/j.jiec.2013.09.058.
  • Sarswat, A.; Mohan, D. (2016) Sustainable development of coconut shell activated carbon (CSAC) & a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. RSC Adv, 6: 85390–85410. doi:10.1039/C6RA19756F.
  • Koumanova, B.; Peeva-Antova, P.; Yaneva, Z. (2005) Adsorption of 4-chlorophenol from aqueous solutions on activated carbon- kinetic study. Journal of the University of Chemical Technology and Metallurgy, 40 (3): 213–218.
  • Anirudhan, T.S.; Sreekumari, S.S.; Bringle, C.D. (2009) Removal of phenols from water and petroleum industry refinery effluents by activated carbon obtained from coconut coir pith. Adsorption, 15: 439–451. doi:10.1007/s10450-009-9193-6.
  • Weber, W.J.; Morris, J.C. (1963) Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89 (2): 31–60.
  • Hamdaoui, O.; Naffrechoux, E. (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147: 381–394. doi:10.1016/j.jhazmat.2007.01.021.
  • Salvador, F.; Martin-Sanchez, N.; Sanchez-Montero, M.J.; Montero, J.; Izquierdo, C. (2013) Regeneration of activated carbons contaminated by phenol using supercritical water. Journal Supercritical Fluids, 74: 1–7. doi:10.1016/j.supflu.2012.11.025.
  • Carmona, M.; Garcia, M.T.; Carnicer, A.; Madrid, M.; Rodriguez, J.F. (2014) Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by supercritical CO2, J.. Chemical Technological Biotechnology, 89: 1660–1667. doi:10.1002/jctb.4233.
  • Ondon, B.S.; Sun, B.; Yan, Z.Y.; Zhu, X.M.; Liu, H. (2014) Effect of microwave heating on the regeneration of modified activated carbons saturated with phenol. Applications Water Sciences, 4: 333–339. doi:10.1007/s13201-013-0147-5.
  • Feng, J.; Shi, S.; Pei, L.; Lv, J.; Liu, Q.; Xie, S. (2016) Preparation of activated carbon from polygonum orientale linn. To remove the phenol in aqueous solutions. PLoS One, 11 (10): e0164744. doi:10.1371/journal.pone.0164744.
  • Zhou, X.; Zhou, J.; Liu, Y.; Wang, Y.; Ren, J.; Ling, B. (2018) Preparation of magnetic biochar derived from cyclosorus interruptus for the removal of phenolic compounds: characterization and mechanism. Separation Sciences Technological, 53 (9): 1307–1318. doi:10.1080/01496395.2018.1444056.
  • Kumar, A.; Jena, H.M. (2016) Removal of methylene blue and phenol onto prepared activated carbon from fox nutshell by chemical activation in batch and fixed-bed column. Journal Cleaner Products, 137: 1246–1259. doi:10.1016/j.jclepro.2016.07.177.
  • Belhamdi, B.; Merzougui, Z.; Trari, M.; Addoun, A. (2016) A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). Journal Applications Researcher Technological, 14: 354–366. doi:10.1016/j.jart.2016.08.004.
  • Moreno-Castilla, C.;. (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42: 83–94. doi:10.1016/j.carbon.2003.09.022.
  • Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J.S. (1993) Dominance of polar/π over charge-transfer effects in stacked phenyl interactions. Journal of the American Chemical Society, 115: 5330–5331. doi:10.1021/ja00065a069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.