121
Views
2
CrossRef citations to date
0
Altmetric
Adsorption

Efficiently removing phenols from aqueous solution using amino acid functionalized D301 resins

ORCID Icon, , , , , & show all
Pages 2361-2373 | Received 04 Feb 2018, Accepted 07 Nov 2018, Published online: 26 Feb 2019

References

  • Martínková, L.; Kotik, M.; Marková, E.; Homolka, L. (2016) Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere, 149: 373–382. doi:10.1016/j.chemosphere.2016.01.022
  • Patel, A.; Sartaj, K.; Arora, N.; Pruthi, V.; Pruthi, P.A. (2017) Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. Journal of Hazardous Materials, 340: 47–56. doi:10.1016/j.jhazmat.2017.07.013
  • Saha, S.; Badhe, N.; Pal, S.; Biswas, R.; Nandy, T. (2017) Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol. Biochemical Engineering Journal, 126: 40–49. doi:10.1016/j.bej.2017.06.017
  • Kurzbaum, E.; Raizner, Y.; Cohen, O.; Suckeveriene, R.Y.; Kulikov, A.; Hakimi, B.; Kruh, L.I.; Armon, R.; Farber, Y.; Menashe, O. (2017) Encapsulated Pseudomonas putida for phenol biodegradation: use of a structural membrane for construction of a well-organized confined particle. Water Research, 121: 37–45. doi:10.1016/j.watres.2017.04.079
  • Praveen, P.; Loh, K.C. (2016) Osmotic membrane bioreactor for phenol biodegradation under continuous operation. Journal of Hazardous Materials, 305: 115–122. doi:10.1016/j.jhazmat.2015.11.034
  • Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Guo, C.; Stadler, F.J. (2018) Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chemical Engineering Journal, 339: 393–410. doi:10.1016/j.cej.2018.01.105
  • Dhiman, P.; Naushad, M.; Batoo, K.M.; Kumar, A.; Sharma, G.; Ghfar, A.A.; Kumar, G.; Singh, M. (2017) Nano FexZn1-xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. Journal of Cleaner Production, 165: 1542–1556. doi:10.1016/j.jclepro.2017.07.245
  • Lu, D.; Yang, M.; Fang, P.; Li, C.; Jiang, L. (2017) Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven TbxOy loaded TiO2-oriented nanosheets. Applied Surface Science, 399: 167–184. doi:10.1016/j.apsusc.2016.12.077
  • Ali, I.; Kim, S.R.; Kim, S.P.; Kim, J.O. (2017) Anodization of bismuth doped TiO2 nanotubes composite for photocatalytic degradation of phenol in visible light. Catalysis Today, 282: 31–37. doi:10.1016/j.cattod.2016.03.029
  • Al-Kahtani, A.A.; Almuqati, T.; Alhokbany, N.; Ahamad, T.; Naushad, M.; Alshehri, S.M. (2018) A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes. Journal of Cleaner Production, 191: 429–435. doi:10.1016/j.jclepro.2018.04.197
  • Wang, Y.; Liang, M.; Fang, J.; Fu, J.; Chen, X. (2017) Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: performance and optimization of the catalyst. Chemosphere, 182: 468–476. doi:10.1016/j.chemosphere.2017.05.037
  • Wang, J.; Yao, Z.; Wang, Y.; Xia, Q.; Jiang, Z. (2017) Design of a novel immobilized solid acid coating and its application in Fenton-like oxidation of phenol. Applied Surface Science, 409: 358–366. doi:10.1016/j.apsusc.2017.03.003
  • Wang, Y.; Fang, J.; Crittenden, J.C.; Shen, C. (2017) Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation. Journal of Hazardous Materials, 329: 321–329. doi:10.1016/j.jhazmat.2017.01.041
  • Inchaurrondo, N.; Ramos, C.P.; Žerjav, G.; Font, J.; Pintar, A.; Haure, P. (2017) Modified diatomites for Fenton-like oxidation of phenol. Microporous and Mesoporous Materials, 239: 396–408. doi:10.1016/j.micromeso.2016.10.026
  • Mousset, E.; Frunzo, L.; Esposito, G.; Hullebusch, E.D.; Oturan, N.; Oturan, M.A. (2016) A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Applied Catalysis B: Environmental, 180: 189–198. doi:10.1016/j.apcatb.2015.06.014
  • Li, Z.; Pranolo, Y.; Zhu, Z.; Cheng, C.Y. (2017) Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy, 171: 1–7. doi:10.1016/j.hydromet.2017.03.007
  • Zoubi, W.A.; Kandil, F.; Chebani, M.K. (2016) Solvent extraction of chromium and copper using Schiff base derived from terephthaldialdehyde and 5-amino-2-methoxy-phenol. Arabian Journal of Chemistry, 9: 526–531. doi:10.1016/j.arabjc.2011.06.023
  • Liu, Y.; Meng, M.; Yao, J.; Da, Z.; Feng, Y.; Yan, Y.; Li, C. (2016) Selective separation of phenol from salicylic acid effluent over molecularly imprinted polystyrene nanospheres composite alumina membranes. Chemical Engineering Journal, 286: 622–631. doi:10.1016/j.cej.2015.10.063
  • Xiao, T.; Nghiem, L.D.; Song, J.; Bao, R.; Li, X.; He, T. (2017) Phenol rejection by cellulose triacetate and thin film composite forward osmosis membranes. Separation and Purification Technology, 186: 45–54. doi:10.1016/j.seppur.2017.05.047
  • Das, K.; Praveen, P.; Loh, K.C. (2017) Importance of uniform distribution of impregnated trioctylphosphine oxide in hollow fiber membranes for simultaneous extraction/stripping of phenol. Chemical Engineering Journal, 308: 727–737. doi:10.1016/j.cej.2016.09.105
  • Loh, C.H.; Zhang, Y.; Goh, S.; Wang, R.; Fane, A.G. (2016) Composite hollow fiber membranes with different poly(dimethylsiloxane) intrusions into substrate for phenol removal via extractive membrane bioreactor. Journal of Membrane Science, 500: 236–244. doi:10.1016/j.memsci.2015.12.001
  • Mukherjee, R.; De, S. (2016) Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane: adsorptive removal of benzene, phenol and toluene from aqueous solution. Separation and Purification Technology, 157: 229–240. doi:10.1016/j.seppur.2015.11.015
  • Zhang, D.; Huo, P.; Liu, W.; Wang, J.; Jiang, Z.; Wang, Y.; Xia, Q.; Yao, Z. (2016) Behavior of phenol adsorption on thermal modified activated carbon. Chinese Journal of Chemical Engineering, 24: 446–452. doi:10.1016/j.cjche.2015.11.022
  • Kakavandi, B.; Jahangiri-Rad, M.; Rafiee, M.; Esfahani, A.R.; Babaei, A.A. (2016) Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous and Mesoporous Materials, 231: 192–206. doi:10.1016/j.micromeso.2016.05.033
  • Lorenc-Grabowska, E.; Rutkowski, P. (2014) High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: kinetics and mechanism. Applied Surface Science, 316: 435–442. doi:10.1016/j.apsusc.2014.08.024
  • Yang, G.; Chen, H.; Qin, H.; Feng, Y. (2014) Amination of activated carbon for enhancing phenol adsorption: effect of nitrogen-containing functional groups. Applied Surface Science, 293: 299–305. doi:10.1016/j.apsusc.2013.12.155
  • Yang, G.; Tang, L.; Zeng, G.; Cai, Y.; Tang, J.; Pang, Y.; Zhou, Y.; Liu, Y.; Wang, J.; Zhang, S.; Xiong, W. (2015) Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259: 854–864. doi:10.1016/j.cej.2014.08.081
  • Yu, Y.; Hu, Z.; Wang, Y.; Gao, H. (2017) Magnetic SN-functionalized diatomite for effective removals of phenols. International Journal of Mineral Processing, 162: 1–5. doi:10.1016/j.minpro.2017.02.001
  • Luo, Z.; Gao, M.; Yang, S.; Yang, Q. (2015) Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: mechanism, kinetics and thermodynamics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482: 222–230. doi:10.1016/j.colsurfa.2015.05.014
  • Alshehri, S.M.; Naushad, M.; Ahamad, T.; Alothman, Z.A.; Aldalbahi, A. (2014) Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chemical Engineering Journal, 254: 181–189. doi:10.1016/j.cej.2014.05.100
  • Víctor-Ortega, M.D.; Ochando-Pulido, J.M.; Martínez-Férez, A. (2016) Phenols removal from industrial effluents through novel polymeric resins: kinetics and equilibrium studies. Separation and Purification Technology, 160: 136–144. doi:10.1016/j.seppur.2016.01.023
  • Ipek, I.; Kabay, N.; Yüksel, M. (2017) Separation of bisphenol A and phenol from water by polymer adsorbents: equilibrium and kinetics studies. Journal of Water Process Engineering, 16: 206–211. doi:10.1016/j.jwpe.2017.01.006
  • Han, J.; Du, Z.; Zou, W.; Li, H.; Zhang, C. (2015) In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol. Chemical Engineering Journal, 262: 571–578. doi:10.1016/j.cej.2014.10.018
  • Younis, S.A.; Ghobashy, M.M.; Samy, M. (2017) Development of aminated poly(glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment. Journal of Environmental Chemical Engineering, 5: 2325–2336. doi:10.1016/j.jece.2017.04.024
  • Aversa, T.M.; Silva, C.M.F.; Rocha, P.C.S.; Lucasm, E.F. (2016) Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processesm. Journal of Environmental Management, 182: 301–307. doi:10.1016/j.jenvman.2016.07.082
  • Han, J.; Xie, K.; Du, Z.; Zou, W.; Zhang, C. (2015) β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater. Carbohydrate Polymers, 120: 85–91. doi:10.1016/j.carbpol.2014.12.011
  • Zhang, J.; Liu, X.; Chen, X.; Li, J.; Zhao, Z. (2014) Separation of tungsten and molybdenum using macroporous resin: competitive adsorption kinetics in binary system. Hydrometallurgy, 144–145: 77–85. doi:10.1016/j.hydromet.2013.12.002
  • Xiao, G.; Wen, R. (2016) Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin: influencing factors, salinity resistance and mechanism. Fluid Phase Equilibria, 411: 1–6. doi:10.1016/j.fluid.2015.11.026
  • An, F.Q.; Li, M.; Wu, R.Y.; Hu, T.P.; Gao, J.F.; Yuan, Z.G. (2017) Effective recovery of AuCl4− using D301 resin functionalized with ethylenediamine and thiourea. Hydrometallurgy, 169: 256–361. doi:10.1016/j.hydromet.2017.02.022
  • An, F.Q.; Du, R.K.; Wang, X.H.; Wan, M.; Dai, X.; Gao, J.F. (2012) Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent. Journal of Hazardous Materials, 201–202: 74–81. doi:10.1016/j.jhazmat.2011.11.037
  • Lagergren, S.;. (1898) About the theory of so-called adsorption of soluble substances, Zur theorie der sogenannten adsorption gelöster stoffe. Kongliga Svenska vetenskapsakademiens handlingar, 24: 1–39.
  • Ho, Y.S.; McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry (Barking, London, England), 34: 451–465. doi:10.1016/S0032-9592(98)00112-5
  • Langmuir, I.;. (1916) The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38: 2221–2295. doi:10.1021/ja02268a002
  • Freundlich, H.M.F.;. (1906) Over the adsorption in solution. The Journal of Physical Chemistry, 57: 1100–1107.
  • Dubinin, M.M.; Radushkevich, L.V. (1947) Equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences of the USSR. Physical Chemistry Section, 55: 331–333.
  • Naushad, M.; Alothman, Z.A.; Khan, M.R. (2013) Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC–MS/MS: equilibrium, kinetics and thermodynamicsstudies. Talanta, 115: 15–23. doi:10.1016/j.talanta.2013.04.015
  • Helfferich, F.;. (1962) Ion Exchange, McGraw-Hill: New York.
  • Lyubchik, S.I.; Lyubchik, A.I.; Galushko, O.L.; Tikhonova, L.P.; Vital, J.; Fonseca, I.M.; Lyubchik, S.B. (2004) Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from comingled wastes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 242: 151–158. doi:10.1016/j.colsurfa.2004.04.066
  • Men, J.Y.; Wang, R.X.; Li, H.; Li, X.Y.; Yang, S.S.; Liu, H.S.; Gao, B.J. (2017) Preparation of crosslinked poly (acryloyloxyethyltrimethyl ammonium chloride) microsphere and its adsorption and mechanism towards shikimic acid. Materials Science and Engineering C, 71: 167–175. doi:10.1016/j.msec.2016.09.076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.