180
Views
2
CrossRef citations to date
0
Altmetric
Cyclone

Effects of separation space diameter on the performance of a novel reverse flow cyclone

ORCID Icon, &
Pages 2450-2460 | Received 19 Feb 2018, Accepted 08 Nov 2018, Published online: 18 Nov 2018

References

  • Alexander, R.M. (1949) Fundamentals of cyclone design and operation. Proceedings Australasian Institute of Minerals Metallurgy, 152–153: 203–228.
  • Karagoz, I.; Avci, A. (2005) Modelling of the pressure drop in Tangential Inlet cyclone separators. Aerosol Science and Technology, 39 (9): 57–64. doi:10.1080/02786820500295560
  • Xiang, R.; Park, S.H.; Lee, K.W. (2001) Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32 (4): 549–561. doi:10.1016/S0021-8502(00)00094-X
  • Chuah, T.G.; Gimbun, J.; Choong, T.S.Y. (2006) A CFD study the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology, 162: 126–132. doi:10.1016/j.powtec.2005.12.010
  • Elsayed, K.; Lacor, C. (2011) Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers and Fluids, 51 (1): 48–59. doi:10.1016/j.compfluid.2011.07.010
  • Stern, A.C.; Caplan, K.J.; Bush, P.D. (1955) Cyclone Dust Collectors, American Petroleum Institute: New York.
  • Zhu, Y.; Lee, K.W. (1999) Experimental study on small cyclones operating at high flowrates. Journal of Aerosol Science, 30: 1303–1315. doi:10.1016/S0021-8502(99)00024-5
  • Elsayed, K.; Lacor, C. (2011) The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling, 35: 1952–1968. doi:10.1016/j.apm.2010.11.007
  • Kaya, F.; Karagoz, I. (2012) Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator. Chemical Papers, 66 (11): 1019–1025. doi:10.2478/s11696-012-0214-7
  • Elsayed, K.; Lacor, C. (2013) The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES. Computers and Fluids, 71: 224–239. doi:10.1016/j.compfluid.2012.09.027
  • El-Batsh, H.M.;. (2013) Improving cyclone performance by proper selection of the exit pipe. Applied Mathematical Modelling, 37: 5286–5303. doi:10.1016/j.apm.2012.10.044
  • Elsayed, K.; Lacor, C. (2012) The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones. Computers and Fluids, 68: 134–147. doi:10.1016/j.compfluid.2012.07.029
  • Kaya, F.; Karagoz, I. (2009) Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg. Chemical Engineering Journal, 151: 39–45. doi:10.1016/j.cej.2009.01.040
  • Sakin, A.; Karagoz, I. (2014) Numerical investigation of surface roughness effects on the flow field in a swirl flow. Uludag University Journal of the Faculty of Engineering, 19: 1–18. doi:10.17482/uujfe.47749
  • Kaya, F.; Karagoz, I.; Avci, A. (2011) Effects of surface roughness on the performance of tangential inlet cyclone separators. Aerosol Science and Technology, 45: 988–995. doi:10.1080/02786826.2011.574174
  • Karagoz, I.; Avci, A.; Surmen, A.; Sendogan, O. (2013) Design and performance evaluation of a new cyclone separator. Journal of Aerosol Science, 59: 57–64. doi:10.1016/j.jaerosci.2013.01.010
  • Tan, F.; Karagoz, I.; Avci, A. (2016) Effects of geometrical parameters on the pressure drop for a modified cyclone separator. Chemical Engineering Communications, 39 (3): 576–581.
  • Avci, A.; Karagoz, I.; Surmen, A. (2013) Development of a new method for evaluating vortex length in reversed flow cyclone separators. Powder Technology, 235: 460–466. doi:10.1016/j.powtec.2012.10.058
  • Safikhani, H.; Mehrabian, P. (2016) Numerical study of flow field in new cyclone separators. Advanced Powder Technology, 27: 379–387. doi:10.1016/j.apt.2016.01.011
  • Brar, L.S.; Sharma, R.P. (2015) Effect of varying diameter on the performance of industrial scale gas cyclone dust separators. Materials Today: Proceedings, 2: 3230–3237. doi:10.1016/j.matpr.2015.07.127
  • Faulkner, W.B.; Buser, M.D.; Whitelock, D.P.; Shaw, B.W. (2007) Effects of cyclone diameter on performance of 1D3D cyclones: collection efficiency. American Society of Agricultural and Biological Engineers, 50 (3): 1053–1059.
  • Kaya, F.; Karagoz, I. (2008) Performance analysis of numerical schemes in swirling turbulent flows in cyclones. Current Science India, 94: 1273–1278.
  • Sommerfeld, M.;. (2000) Theoretical and Experimental Modeling of Particulate Flow, Lecture Series 2000-6 Von Karman Institute for Fluid Dynamics, Belgium.
  • ANSYS Inc.. (2013) ANSYS Fluent Theory Guide, Canonsburg.
  • Morsi, S.A.; Alexander, A.J. (1972) An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55: 193–208. doi:10.1017/S0022112072001806
  • ANSYS Inc.. (2013) ANSYS Fluent User’s Guide, Canonsburg.
  • Avci, A.; Karagoz, I. (2016) The design of new generation cyclone separators and optimization of the performance characteristics. Technical Report (No:114M591), May.
  • Caliskan, M.E.; Karagoz, I.; Avcı, A.; Surmen, A. (2017) Design and performance analysis of a virtual body mini cyclone, 8th International Advanced Technologies Symposium, 19–22 Oct 2017, Elazig, Turkey.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.