380
Views
17
CrossRef citations to date
0
Altmetric
Adsorption

Adsorption of phenol onto aluminium oxide and zinc oxide: A comparative study with titanium dioxide

, &
Pages 2840-2852 | Received 17 Oct 2018, Accepted 14 Nov 2018, Published online: 28 Nov 2018

References

  • Roostaei, N.; Tezel, F.H. (2004) Removal of phenol from aqueous solutions by adsorption. Journal of Environmental Management, 70 (2): 157–164. doi:10.1016/j.jenvman.2003.11.004
  • Ahmaruzzaman, M. (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances in Colloid and Interface Science, 143 (1–2): 48–67. doi:10.1016/j.cis.2008.07.002
  • Zazouli, M.A.; Taghavi, M. (2012) Phenol removal from aqueous solutions by electrocoagulation technology using iron electrodes: effectof some variables. Journal of Water Resource and Protection, 4 (11): 980–983. doi:10.4236/jwarp.2012.411113
  • Ahmed, S.; Rozaik, E.; Abdelhalim, H. (2015) Effect of configurations, bacterial adhesion, and anode surface area on performance of microbial fuel cells used for treatment of synthetic wastewater. Water Air and Soil Pollution, 226 (9): 300. doi:10.1007/s11270-015-2567-3
  • Safwat, S.M. (2018) Performance of moving bed biofilm reactor using effective microorganisms. Journal of Cleaning Products, 185: 723–731. doi:10.1016/j.jclepro.2018.03.041
  • Safwat, S.M.; Rozaik, E.; Abdel-Halim, H. (2018) A comparative study on treatment of wastewaters with various biodegradability and various pH values using single-chamber microbial fuel cells. Water and Environment Journal, 1–9.
  • Al-Jabari, M. (2017) Kinetic mass transfer adsorption model for treating dairy wastewater with stone cutting solid waste. Environmental Technology & Innovation, 7: 21–29. doi:10.1016/j.eti.2016.11.004
  • Safwat, S.; Matta, M. (2018) Adsorption of urea onto granular activated alumina: a comparative study with granular activated carbon. Journal of Dispersion Science and Technology, doi:10.1080/01932691.2018.1461644
  • Safwat, S.; Hamed, A.; Rozaik, E. (2018) Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: a comparative study with aluminum electrodes. Separation Science and Technology, doi:10.1080/01496395.2018.1494744
  • Senthil Kumar, P.; Ramalingam, S.; Abhinaya, R.V.; Thiruvengadaravi, K.V.; Baskaralingam, P.; Sivanesan, S. (2011) Lead(II) adsorption onto sulphuric acid treated cashew nut shell. Separation Science and Technology, 46 (15): 2436–2449. doi:10.1080/01496395.2011.590174
  • Saravanan, A.; Kumar, P.S.; Renita, A.A. (2018) Hybrid synthesis of novel material through acid modification followed ultrasonication to improve adsorption capacity for zinc removal. Journal of Cleaning Products, 172: 92–105. doi:10.1016/j.jclepro.2017.10.109
  • Prabu, D.; Parthiban, R.; Ponnusamy, S.K.; Anbalagan, S.; John, R.; Titus, T. (2017) Sorption of Cu(II) ions by nano-scale zero valent iron supported on rubber seed shell. IET Nanobiotechnology, 11 (6). doi:10.1049/iet-nbt.2016.0224
  • Xie, J.; Lin, Y.; Li, C.; Wu, D.; Kong, H. (2014) Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technology, 269: 351–357. doi:10.1016/j.powtec.2014.09.024
  • Stietiya, M.H.; Wang, J.J. (2014) Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. Journal of Environmental Quality, 43 (2): 498. doi:10.2134/jeq2013.07.0263
  • Davis, J.A.; Gloor, R. (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environmental Science & Technology, 15 (10): 1223–1229. doi:10.1021/es00092a012
  • Zbair, M.; Anfar, Z.; Ait Ahsaine, H.; El Alem, N.; Ezahri, M. (2018) Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. Journal of Environmental Management, 206: 383–397. doi:10.1016/j.jenvman.2017.10.058
  • Ghaedi, M.; Ansari, A.; Habibi, M.H.; Asghari, A.R. (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. Journal of Industrial and Engineering Chemistry, 20 (1): 17–28. doi:10.1016/j.jiec.2013.04.031
  • Kordouli, E.; Bourikas, K.; Lycourghiotis, A.; Kordulis, C. (2015) The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catalysis Today, 252: 128–135. doi:10.1016/j.cattod.2014.09.010
  • Erhayem, M.; Sohn, M. (2014) Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. The Science of the Total Environment, 470–471: 92–98. doi:10.1016/j.scitotenv.2013.10.031
  • Li, J.M.; Meng, X.G.; Hu, C.W.; Du, J. (2009) Adsorption of phenol, P-chlorophenol and P-nitrophenol onto functional Chitosan. Bioresource Technology, 100 (3): 1168–1173. doi:10.1016/j.biortech.2008.09.015
  • Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials : the Official Journal of the International Zeolite Association, 111 (1–3): 276–284. doi:10.1016/j.micromeso.2007.08.002
  • Tancredi, N.; Medero, N.; Möller, F.; Píriz, J.; Plada, C.; Cordero, T. (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from eucalyptus wood. Journal of Colloid and Interface Science, 279 (2): 357–363. doi:10.1016/j.jcis.2004.06.067
  • Bekkouche, S.; Bouhelassa, M.; Hadj Salah, N.; Meghlaoui, F.Z. (2004) Study of adsorption of phenol on titanium oxide (TiO2). Desalination, 166 (1–3): 355–362. doi:10.1016/j.desal.2004.06.090
  • Mohammadi, L.; Bazrafshan, E.; Noroozifar, M.; Ansari-Moghaddam, A.; Barahuie, F.; Balarak, D. (2017) Removing 2, 4-Dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles. Water Science and Technology : a Journal of the International Association on Water Pollution Research, 76 (11): 3054–3068. doi:10.2166/wst.2017.479
  • Mukherjee, S.; Gupta, N.K.; Roy, S.P.; Dash, S.; Kumar, A.; Bamankar, Y.R.; Rao, T.V.V.; Kumar, N.; Naik, Y. (2016) Preparation of palladium impregnated alumina adsorbents: thermal and neutron activation analysis. Thermochimica Acta, 625: 56–64. doi:10.1016/j.tca.2015.11.016
  • Saleh, T.A.; Naeemullah,; Tuzen, M.; Sarı, A. (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chemical Engineering Research and Design, 117: 218–227. doi:10.1016/j.cherd.2016.10.030
  • Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 38 (8): 2043–2052. doi:10.1016/j.watres.2004.01.034
  • Yoon, R.H.; Salman, T.; Donnay, G. (1979) Predicting points of zero charge of oxides and hydroxides. Journal of Colloid and Interface Science, 70 (3): 483–493. doi:10.1016/0021-9797(79)90056-0
  • Parida, K.M.; Dash, S.S.; Das, D.P. (2006) Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. Journal of Colloid and Interface Science, 298 (2): 787–793. doi:10.1016/j.jcis.2005.12.053
  • Bouguerraa, W.; Mnifa, A.; Hamrounia, B.; Dhahbib, M. (2008) Boron removal by adsorption onto activated alumina and by reverse osmosis. Desalination, 223 (1–3): 31–37. doi:10.1016/j.desal.2007.01.193
  • Worch, E. (2012) Adsorption technology in water treatment: fundamentals, processes, and modeling. Germany: Walter de Gruyter.
  • Coimbra, R.N.; Calisto, V.; Ferreira, C.I.A.; Esteves, V.I.; Otero, M. (2015) Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. The Arabian Journal of Chemistry, doi:10.1016/j.arabjc.2015.12.001
  • Blanchard, G.; Maunaye, M.; Martin, G. (1984) Removal of heavy metals from waters by means of natural zeolites. Water Research, 18 (12): 1501–1507. doi:10.1016/0043-1354(84)90124-6
  • Lagergren, S. (1898) About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24: 1–39.
  • McLintock, I.S. (1967) The elovich equation in chemisorption kinetics. Nature, 216 (5121): 1204–1205.
  • Azarpira, H.; Mahdavi, Y.; Khaleghi, O.; Balarak, D. (2016) Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes. Der Pharmacia Lettre, 8 (11): 107–113.
  • Leec, S.-M. (2017) Kinetic, isotherms and thermodynamic studies in the removal of 2-chlorophenol from aqueous solution using modified rice straw. Desalination and Water Treatment, 63: 203–211. doi:10.5004/dwt.2017.20166
  • Weber, W.J.; Morris, J.C. (1963) Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89 (2): 31–60.
  • Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120: 88–116. doi:10.1016/j.watres.2017.04.014
  • Belhachemi, M.; Addoun, F. (2012) Adsorption of Congo red onto activated carbons having different surface properties: studies of kinetics and adsorption equilibrium. Desalination and Water Treatment, 37 (1–3): 122–129. doi:10.1080/19443994.2012.661263
  • Boyd, G.E.; Adamson, A.W.; Myers, L.S., Jr. (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. kinetics1. Journal of the American Chemical Society, 69 (11): 2836–2848. doi:10.1021/ja01203a066
  • Senthilkumar, P.; Ramalingam, S.; Abhinaya, R.V.; Kirupha, S.D.; Vidhyadevi, T.; Sivanesan, S. (2012) Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. The Canadian Journal of Chemical Engineering, 90 (4): 973–982. doi:10.1002/cjce.20588
  • Freundlich, H.M.F. (1906) Über Die Absorption in Lösungen. Zeitschrift für Physikalische Chemie, 57 (1906): 385–470.
  • Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9): 1361–1403. doi:10.1021/ja02242a004
  • Temkin, M.J.; Pyzhev, V. (1940) Recent modifications to Langmuir isotherms. Acta Physicochimica URSS, 12: 217–222.
  • Dubinin, M.M.; Radushkevich, L.V. (1947) Equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences Physical Chemistry Section USSR, 55: 331–333.
  • Redlich, O.; Peterson, D.L. (1959) A useful adsorption isotherm. Journal of Physical Chemistry A, 63 (6): 1024. doi:10.1021/j150576a611
  • Balarak, D. (2016) Kinetics, isotherm and thermodynamics studies on Bisphenol A adsorption using barley husk. International Journal of ChemTech Research, 9 (5): 681–690.
  • Dyanati, R.; Yousefi, Z.; Yazdani Cherati, J.; Balarak, D. (2013) Investigating phenol absorption from aqueous solution by dried Azolla. Journal of Mazandaran University of Medical Sciences, 22 (2): 13–20.
  • Diyanati, R.; Yazdani Cherati, J.; Belarak, D. (2013) Effect of sorbitol on phenol removal rate by Lemna Minor. Journal of Mazandaran University of Medical Sciences, 22 (2): 58–65.
  • Balarak, D.; Joghataei, A. (2016) Biosorption of phenol using dried rice husk biomass: kinetic and equilibrium studies. Der Pharmacia Lettre, 8 (6): 96–103.
  • Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. (2018) Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Applied Clay Science, 159: 83–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.