329
Views
17
CrossRef citations to date
0
Altmetric
Adsorption

Three-dimensional g-C3N4/MgO composites as a high-performance adsorbent for removal of Pb(II) from aqueous solution

, , , , &
Pages 2817-2829 | Received 28 Jun 2018, Accepted 26 Nov 2018, Published online: 10 Dec 2018

References

  • Liao, Q.; Zou, D.; Pan, W.; Linghu, W.; Shen, R.; Jin, Y.; Feng, G.; Li, X.; Ye, F.; Asiri, A.M.; Marwani, H.M.; Zhu, Y.; Wu, X.; Dong, W. (2018) Highly efficient scavenging of P(V), Cr(VI), Re(VII) anions onto g-C3N4 nanosheets from aqueous solutions as impacted via water chemistry. Journal of Molecular Liquids, 258: 275–284. doi:10.1016/j.molliq.2018.03.046
  • Liao, Q.; Zou, D.; Pan, W.; Linghu, W.; Shen, R.; Li, X.; Asiri, A.M.; Alamry, K.A.; Sheng, G.; Zhan, L.; Wu, X. (2018) Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3N4 nanosheets. Journal of Molecular Liquids, 252: 351–361. doi:10.1016/j.molliq.2017.12.145
  • Lu, J.; Wang, Y.; Huang, J.; Cao, L.; Li, J.; Hai, G.; Bai, Z. (2016) One-step synthesis of g-C3N4 hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity. Materials Science and Engineering: B, 214: 19–25. doi:10.1016/j.mseb.2016.08.003
  • Mohamed, R.M.; Shawky, A.; Mkhalid, I.A. (2017) Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye. Journal of Physics and Chemistry of Solids, 101: 50–57. doi:10.1016/j.jpcs.2016.10.009
  • Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H. (2017) Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. Journal of Environmental Chemical Engineering, 5 (3): 2259–2273. doi:10.1016/j.jece.2017.03.031
  • Sharma, J.; Sharma, M.; Basu, S. (2017) Synthesis of mesoporous MgO nanostructures using mixed surfactants template for enhanced adsorption and antimicrobial activity. Journal of Environmental Chemical Engineering, 5 (4): 3429–3438. doi:10.1016/j.jece.2017.07.015
  • Shen, C.; Chen, C.; Wen, T.; Zhao, Z.; Wang, X.; Xu, A. (2015) Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions. Journal of Colloid and Interface Science, 456: 7–14. doi:10.1016/j.jcis.2015.06.004
  • Xiao, J.; Xie, Y.; Cao, H.; Wang, Y.; Zhao, Z. (2015) g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted OH generation. Catalysis Communications, 66: 10–14. doi:10.1016/j.catcom.2015.03.004
  • Yan, J.; Zhou, C.; Li, P.; Chen, B.; Zhang, S.; Dong, X.; Xi, F.; Liu, J. (2016) Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508: 257–264. doi:10.1016/j.colsurfa.2016.08.067
  • Chang, F.; Zheng, J.; Wang, X.; Xu, Q.; Deng, B.; Hu, X.; Liu, X. (2018) Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance. Materials Science in Semiconductor Processing, 75: 183–192. doi:10.1016/j.mssp.2017.11.043
  • Guo, S.Z.; Duan, N.; Dan, Z.G.; Chen, G.Y.; Shi, F.F.; Gao, W.B. (2018) g-C3N4 modified magnetic Fe3O4 adsorbent: preparation, characterization, and performance of Zn(II), Pb(II) and Cd(II) removal from aqueous solution. Journal of Molecular Liquids, 258: 225–234. doi:10.1016/j.molliq.2018.03.029
  • Guo, S.; Duan, N.; Dan, Z.; Xu, F.; Zhang, C.; Shi, F.; Gao, W. (2018) Three-dimensional magnetic graphitic carbon nitride composites as high-performance adsorbent for removal Pb2+ from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 89: 169–182. doi:10.1016/j.jtice.2018.05.012
  • Cui, W.; Li, P.; Wang, Z.; Zheng, S.; Zhang, Y. (2018) Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method. Journal of Hazardous Materials, 341: 268–276. doi:10.1016/j.jhazmat.2017.07.073
  • Feng, J.; Liu, S.; Chen, T.; Ren, Y.; Lv, Y.; Fan, Z. (2016) Fabrication of MgO nanosheets for removal of Ni (II) via hydrothermal and calcination method without surfactant. Materials Chemistry and Physics, 183: 499–505. doi:10.1016/j.matchemphys.2016.09.007
  • Hu, M.; Yan, X.; Hu, X.; Zhang, J.; Feng, R.; Zhou, M. (2018) Ultra-high adsorption capacity of MgO/SiO2 composites with rough surfaces for Congo red removal from water. Journal of Colloid and Interface Science, 510: 111–117. doi:10.1016/j.jcis.2017.09.063
  • Xu, X.; Jiang, X.Y.; Jiao, F.P.; Chen, X.Q.; Yu, J.G. (2018) Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. Journal of the Taiwan Institute of Chemical Engineers, 85: 106–114. doi:10.1016/j.jtice.2017.12.024
  • Teng, J.; Zeng, X.; Xu, X.; Yu, J.G. (2018) Assembly of a novel porous 3d graphene oxide-starch architecture by a facile hydrothermal method and its adsorption properties toward metal ions. Materials Letters, 214: 31–33. doi:10.1016/j.matlet.2017.11.072
  • Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. (2018) Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and Saureus. Applied Catalysis B: Environmental, 220: 272–282. doi:10.1016/j.apcatb.2017.08.044
  • Liao, Q.; Pan, W.; Zou, D.; Shen, R.; Sheng, G.; Li, X.; Zhu, Y.; Dong, L.; Asiri, A.M.; Alamry, K.A.; Linghu, W. (2018) Using of g-C3N4 nanosheets for the highly efficient scavenging of heavy metals at environmental relevant concentrations. Journal of Molecular Liquids, 261: 32–40. doi:10.1016/j.molliq.2018.03.093
  • Liao, Q.; Yan, S.; Linghu, W.; Zhu, Y.; Shen, R.; Ye, F.; Feng, G.; Dong, L.; Asiri, A.M.; Marwani, H.M.; Xu, D.; Wu, X.; Li, X. (2018) Impact of key geochemical parameters on the highly efficient sequestration of Pb(II) and Cd(II) in water using g-C3N4 nanosheets. Journal of Molecular Liquids, 258: 40–47. doi:10.1016/j.molliq.2018.02.118
  • Jin, Z.; Jia, Y.; Luo, T.; Kong, L.-T.; Sun, B.; Shen, W.; Meng, F.-L.; Liu, J.-H. (2015) Efficient removal of fluoride by hierarchical MgO microspheres: performance and mechanism study. Applied Surface Science, 357: 1080–1088. doi:10.1016/j.apsusc.2015.09.127
  • Jin, Z.; Jia, Y.; Zhang, K.-S.; Kong, L.-T.; Sun, B.; Shen, W.; Meng, F.-L.; Liu, J.-H. (2016) Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. Journal of Alloys and Compounds, 675: 292–300. doi:10.1016/j.jallcom.2016.03.118
  • Li, P.; Liu, C.; Zhang, L.; Zheng, S.; Zhang, Y. (2017) Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method. Ultrasonics Sonochemistry, 34: 938–946. doi:10.1016/j.ultsonch.2016.07.029
  • Li, R.; Liang, W.; Wang, J.J.; Gaston, L.A.; Huang, D.; Huang, H.; Lei, S.; Awasthi, M.K.; Zhou, B.; Xiao, R.; Zhang, Z. (2018) Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212: 77–87. doi:10.1016/j.jenvman.2017.12.034
  • Yu, Z.; Niu, J.Y.; Yang, R.J.; Qu, Y.H.; Gao, N.D.; Hou, C.; Sun, C.M.; Wang, W.X. (2016) Synthesis of silica-gel-supported sulfur-capped pamam dendrimers for efficient Hg(II) adsorption: experimental and Dft study. Industrial and Engineering Chemistry Research, 55: 3679–3688. doi:10.1021/acs.iecr.6b00172
  • Wang, X.H.; Yang, L.; Zhang, J.P.; Wange, C.Y.; Li, Q.Y. (2014) Preparation and characterization of Chitosan–poly(Vinyl Alcohol)/Bentonite nanocomposites for adsorption of Hg(II) ions. Chemical Engineering Journal, 251: 404–412. doi:10.1016/j.cej.2014.04.089
  • Li, R.J.; Liu, L.F.; Yang, F.L. (2013) Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chemical Engineering Journal, 229: 460–468. doi:10.1016/j.cej.2013.05.089
  • López-Muñoz, M.-J.; Arencibia, A.; Cerro, L.; Pascual, R.; Melgar, Á. (2016) Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Applied Surface Science, 367: 91–100. doi:10.1016/j.apsusc.2016.01.109
  • Ho, Y.S.; McKay, G. (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76: 183–186. doi:10.1205/095758298529326
  • Ho, Y.S.;. (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Research, 40: 119–123. doi:10.1016/j.watres.2005.10.040
  • Boyd, G.E.; Adamson, A.W.; Myers, L.S. (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites: II Kinetics. Journal of the American Chemical Society, 69: 2836–2841.
  • Ho, Y.S.;. (2003) Removal of copper ions from aqueous solution by tree fern. Water Research, 37: 2323–2328. doi:10.1016/S0043-1354(03)00002-2
  • Ho, Y.S.;. (2004) Selection of optimum sorption isotherm. Carbon, 42: 2115–2119. doi:10.1016/j.carbon.2004.03.019
  • Niu, Y.; Liu, H.; Rongjun, Q.; Liang, S.; Chen, H.; Sun, C.; Cui, Y. (2015) Preparation and characterization of thiourea-containing silica gel hybrid materials for Hg(II) adsorption. Industrial and Engineering Chemistry Research, 54: 1656–1664. doi:10.1021/ie5046928
  • Venkateswarlu, S.; Yoon, M. (2015) Core-shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@DAPF) for fast removal of Pb(II) from aqueous solutions. ACS Applied Materials and Interfaces, 7: 25362–25372. doi:10.1021/acsami.5b07723
  • Badruddoza, A.Z.; Shawon, Z.B.; Tay, W.J.; Hidajat, K.; Uddin, M.S. (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate Polymers, 91: 322–332. doi:10.1016/j.carbpol.2012.08.030
  • Luo, X.; Lei, X.; Cai, N.; Xie, X.; Xue, Y.; Yu, F. (2016) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustainable Chemistry and Engineering, 4: 3960–3969. doi:10.1021/acssuschemeng.6b00790
  • Zhou, J.; Liu, Y.; Zhou, X.; Ren, J.; Zhong, C. (2018) Magnetic multi-porous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution. Applied Surface Science, 427: 976–985. doi:10.1016/j.apsusc.2017.08.110
  • Yue, B.; Yu, L.Y.; Jiao, F.P.; Jiang, X.Y.; Yu, J.G. (2018) The fabrication of pentaerythritol pillared graphene oxide composite and its adsorption performance towards metal ions from aqueous. Desalination and Water Treatment, 102: 124–133. doi:10.5004/dwt.2018.21805
  • Zhou, Z.; Xu, Z.; Feng, Q.; Yao, D.; Yu, J.; Wang, D. (2018) Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. Journal of Cleaner Production, 187: 996–1005. doi:10.1016/j.jclepro.2018.03.268
  • Peng, H.; Gao, P.; Chu, G.; Pan, B.; Peng, J.; Xing, B. (2017) Enhanced adsorption of cu(ii) and cd(ii) by phosphoric acid-modified biochars. Environmental Pollution, 229: 846–853. doi:10.1016/j.envpol.2017.07.004
  • Xu, D.; Tan, X.; Chen, C.; Wang, X. (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 154: 407–416. doi:10.1016/j.jhazmat.2007.10.059
  • Zhou, K.; Liu, Y.C.; Yang, Z.G.; Liu, H.Z.; Xie, T. (2017) High-capacity sorption of U(VI) from aqueous solution using a bio-based oxidized polymeric material. Journal of the Taiwan Institute of Chemical Engineers, 63: 453–462. doi:10.1016/j.jtice.2016.02.031
  • Li, X.; Xing, J.; Zhang, C.; Han, B.; Zhang, Y.; Wen, T. (2018) Adsorption of lead on sulfur-doped graphitic carbon nitride nanosheets: experimental and theoretical calculation study. Acs Sustainable Chemistry & Engineering, 6: 10606–10615. doi:10.1021/acssuschemeng.8b01934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.