271
Views
8
CrossRef citations to date
0
Altmetric
Adsorption

Hypercrosslinked functionalized lignosulfonates prepared via Friedel–Crafts alkylation reaction for enhancing Pb(Ⅱ) removal from aqueous

, , , , , , , & show all
Pages 2830-2839 | Received 17 Jul 2018, Accepted 27 Nov 2018, Published online: 20 Dec 2018

References

  • Ma, H.; Hei, Y.; Wei, T.; Li, H. (2017) Three-dimensional interconnected porous tablet ceramic: synthesis and Pb(Ii) adsorption. Materials Letters, 196: 396. doi:10.1016/j.matlet.2017.03.063
  • Ge, Y.; Qin, L.; Li, Z. (2016) Lignin microspheres: an effective and recyclable natural polymer-based adsorbent for lead ion removal. Materials & Design, 95: 141. doi:10.1016/j.matdes.2016.01.102
  • Ali, S.A.; Kazi, I.W.; Ullah, N. (2015) New chelating ion-exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal. Industrial & Engineering Chemistry Research, 54: 9689. doi:10.1021/acs.iecr.5b02267
  • Kadirvelu, K.; Faur-Brasquet, C.; Cloirec, P.L. (2000) Removal of Cu(Ii), Pb(Ii), and Ni(Ii) by adsorption onto activated carbon cloths. Langmuir : the ACS Journal of Surfaces and Colloids, 16: 8404. doi:10.1021/la0004810
  • Jurado-Sanchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V.V.; Orozco, J.; Galarnyk, M.; Wang, J. (2015) Self-propelled activated carbon Janus micromotors for efficient water purification. Small, 11: 499. doi:10.1002/smll.201402215
  • Nowicki, P.; Kazmierczak-Razna, J.; Pietrzak, R. (2016) Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate. Materials & Design, 90: 579. doi:10.1016/j.matdes.2015.11.004
  • Yang, S.; Kim, H.; Narayanan, S.; McKay, I.S.; Wang, E.N. (2015) Dimensionality effects of carbon-based thermal additives for microporous adsorbents. Materials & Design, 85: 520. doi:10.1016/j.matdes.2015.06.166
  • Ge, Y.; Li, Z.; Xiao, D.; Xiong, P.; Ye, N. (2014) Sulfonated multi-walled carbon nanotubes for the removal of copper (Ii) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 20: 1765. doi:10.1016/j.jiec.2013.08.030
  • Nagarjuna, R.; Challagulla, S.; Alla, N.; Ganesan, R.; Roy, S. (2015) Synthesis and characterization of reduced-graphene Oxide/Tio2/Zeolite-4a: a bifunctional nanocomposite for abatement of methylene blue. Materials & Design, 86: 621. doi:10.1016/j.matdes.2015.07.116
  • Abney, C.W.; Gilhula, J.C.; Lu, K.; Lin, W. (2014) Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals. Advanced Materials, 26: 7993. doi:10.1002/adma.201402404
  • Yang, Y.; Faheem, M.; Wang, L.; Meng, Q.; Sha, H.; Yang, N.; Yuan, Y.; Zhu, G. (2018) Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Central Science, 4: 748. doi:10.1021/acscentsci.7b00454
  • Yuan, Y.; Yang, Y.; Ma, X.; Meng, Q.; Wang, L.; Zhao, S.; Zhu, G. (2018) Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Advanced Materials, 30: e1706507. doi:10.1002/adma.v30.12
  • Yang, Y.; Yan, Z.; Wang, L.; Meng, Q.; Yuan, Y.; Zhu, G. (2018) Constructing synergistic groups in porous aromatic frameworks for the selective removal and recovery of lead(Ii) Ions. Journal of Materials Chemistry A, 6: 5202. doi:10.1039/C8TA00382C
  • Ge, Y.; Li, Z.; Kong, Y.; Song, Q.; Wang, K. (2014) Heavy metal ions retention by Bi-functionalized lignin: synthesis, applications, and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20: 4429. doi:10.1016/j.jiec.2014.02.011
  • Ali, A.; Mannan, A.; Hussain, I.; Hussain, I.; Zia, M. (2018) Effective removal of metal ions from aqueous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process. Environmental Nanotechnology, Monitoring & Management, 9: 1. doi:10.1016/j.enmm.2017.11.003
  • Fakhre, N.A.; AndIbrahim, B.M. (2018) The use of new chemically modified cellulose for heavy metal ion adsorption. Journal of Hazardous Materials, 343: 324. doi:10.1016/j.jhazmat.2017.08.043
  • Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Thomas Choong, S.Y. (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175: 305. doi:10.1016/j.desal.2004.10.014
  • Mu, R.; Wang, M.; Bu, Q.; Liu, D.; Zhao, Y. (2018) Improving lead adsorption through chemical modification of wheat straw by lactic acid. IOP Conference Series: Earth and Environmental Science, 108: 022063. doi:10.1088/1755-1315/108/2/022063
  • Wang, Y.; Shi, L.; Gao, L.; Wei, Q.; Cui, L.; Hu, L.; Yan, L.; Du, B. (2015) The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. Journal of Colloid and Interface Science, 451: 7. doi:10.1016/j.jcis.2015.03.048
  • Laurichesse, S.; Avérous, L. (2014) Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science, 39: 1266. doi:10.1016/j.progpolymsci.2013.11.004
  • Demirbas, A.;. (2004) Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication. Journal of Hazardous Materials, 109: 221. doi:10.1016/j.jhazmat.2004.04.002
  • Teng, X.; Xu, H.; Song, W.; Shi, J.; Xin, J.; Hiscox, W.C.; Zhang, J. (2017) Preparation and properties of hydrogels based on PEGylated lignosulfonate amine. ACS Omega, 2: 251. doi:10.1021/acsomega.7b01318
  • Zhang, X.; Zhang, Z.; Wang, F.; Wang, Y.; Song, Q.; Xu, J. (2013) Lignosulfonate-based heterogeneous sulfonic acid catalyst for hydrolyzing glycosidic bonds of polysaccharides. Journal of Molecular Catalysis A: Chemical, 377: 102. doi:10.1016/j.molcata.2013.05.001
  • Li, Z.; Kong, Y.; Ge, Y. (2015) Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chemical Engineering Journal, 270: 229. doi:10.1016/j.cej.2015.01.123
  • Jin, C.; Zhang, X.; Xin, J.; Liu, G.; Wu, G.; Kong, Z.; Zhang, J. (2017) Clickable synthesis of 1,2,4-triazole modified lignin-based adsorbent for the selective removal of Cd(Ii). ACS Sustainable Chemistry & Engineering, 5: 4086. doi:10.1021/acssuschemeng.7b00072
  • Chang, Y.; Xing, S.; Wei, X.; Wu, Y.; Ma, Z. (2014) Lignosulfanate-assistant hydrothermal method for synthesis of titanate nanotubes with improved adsorption capacity for metal ions. Materials Letters, 132: 353. doi:10.1016/j.matlet.2014.06.085
  • Li, Z.; Ge, Y.; Wan, L. (2015) Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials, 285: 77. doi:10.1016/j.jhazmat.2014.11.033
  • Şimşek, S.; Ulusoy, U. (2013) Adsorptive properties of sulfolignin–polyacrylamide graft copolymer for lead and uranium: effect of hydroxilamine–hydrochloride treatment. Reactive and Functional Polymers, 73: 73. doi:10.1016/j.reactfunctpolym.2012.09.003
  • Yao, Q.; Xie, J.; Liu, J.; Kang, H.; Liu, Y. (2014) Adsorption of lead ions using a modified lignin hydrogel. Journal of Polymer Research, 21: 465. doi:10.1007/s10965-014-0465-9
  • Xu, W.; Zhang, W.; Li, Y.; Li, W. (2016) Synthesis of acrylic-lignosulfonate resin for crystal violet removal from aqueous solution. Korean Journal of Chemical Engineering, 33: 2659. doi:10.1007/s11814-016-0119-1
  • Zeng, W.; Liu, Y.-G.; Hu, X.-J.; Liu, S.-B.; Zeng, G.-M.; Zheng, B.-H.; Jiang, L.-H.; Guo, F.-Y.; Ding, Y.; Xu, Y. (2016) Decontamination of methylene blue from aqueous solution by magnetic chitosan lignosulfonate grafted with graphene oxide: effects of environmental conditions and surfactant. RSC Advances, 6: 19298. doi:10.1039/C5RA27657H
  • Li, F.; Wang, X.; Yuan, T.; Sun, R. (2016) A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(Ii) removal. Journal of Materials Chemistry A, 4: 11888. doi:10.1039/C6TA03779H
  • Yang, J.; Wu, J.-X.; Lü, Q.-F.; Lin, -T.-T. (2014) Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb(Ii) Ions. ACS Sustainable Chemistry & Engineering, 2: 1203. doi:10.1021/sc500030v
  • Xu, S.; Luo, Y.; Tan, B. (2013) Recent development of hypercrosslinked microporous organic polymers. Macromolecular Rapid Communications, 34: 471. doi:10.1002/marc.201200788
  • Hegyesi, N.; Vad, R.T.; Pukánszky, B. (2017) Determination of the specific surface area of layered silicates by methylene blue adsorption: the role of structure, Ph and layer charge. Applied Clay Science, 146: 50. doi:10.1016/j.clay.2017.05.007
  • Sørensen, B.L.; Wakeman, R.J. (1996) Filtration characterisation and specific surface area measurement of activated sludge by rhodamine B adsorption. Water Research, 30: 115. doi:10.1016/0043-1354(95)00131-4
  • Smith, P.G.; Coackley, P. (1983) A method for determining specific surface area of activated sludge by dye adsorption. Water Research, 17: 595. doi:10.1016/0043-1354(83)90120-3
  • Laurent, J.; Casellas, M.; Dagot, C. (2009) Heavy metals uptake by sonicated activated sludge: relation with floc surface properties. Journal of Hazardous Materials, 162: 652. doi:10.1016/j.jhazmat.2008.05.066
  • Hu, L.; Ni, H.; Chen, X.; Wang, L.; Wei, Y.; Jiang, T.; Lü, Y.; Lu, X.; Ye, P. (2016) Hypercrosslinked polymers incorporated with imidazolium salts for enhancing Co2 capture. Polymer Engineering & Science, 56: 573. doi:10.1002/pen.24282
  • Huang, J.-B.; Liu, C.; Ren, L.-R.; Tong, H.; Li, W.-M.; Wu, D. (2013) Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry. Journal of Fuel Chemistry and Technology, 41: 657. doi:10.1016/S1872-5813(13)60031-6
  • Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 2: 1072. doi:10.1021/sc500087z
  • Li, B.; Su, F.; Luo, H.-K.; Liang, L.; Tan, B. (2011) Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials, 138: 207. doi:10.1016/j.micromeso.2010.08.023
  • Yao, S.; Yang, X.; Yu, M.; Zhang, Y.; Jiang, J.-X. (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for Co2 capture. Journal of Materials Chemistry. A, 2: 8054. doi:10.1039/C4TA00375F
  • Yan, M.; Li, Z. (2016) Microwave-assisted functionalized lignin with dithiocarbamate for enhancing adsorption of Pb(Ii). Materials Letters, 170: 135. doi:10.1016/j.matlet.2016.02.028
  • Wang, S.; Wang, K.; Dai, C.; Shi, H.; Li, J. (2015) Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous Sba-15 silica composite. Chemical Engineering Journal, 262: 897. doi:10.1016/j.cej.2014.10.035
  • Sekar, M.; Sakthi, V.; Rengaraj, S. (2004) Kinetics and equilibrium adsorption study of lead(Ii) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 279: 307. doi:10.1016/j.jcis.2004.06.042
  • Kumari, S.; Chauhan, G.S. (2014) New cellulose-lysine Schiff-base-based sensor-adsorbent for mercury ions. ACS Applied Materials & Interfaces, 6: 5908. doi:10.1021/am500820n
  • Li, Z.;. (2014) Synthesis of a carbamide-based dithiocarbamate chelator for the removal of heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 20: 586. doi:10.1016/j.jiec.2013.05.018
  • Chattaraj, P.K.;. (2001) Chemical reactivity and selectivity: local HSAB principle versus frontier orbital theory. The Journal of Physical Chemistry A, 105: 511. doi:10.1021/jp003786w
  • Albadarin, A.B.; Al-Muhtaseb, A.A.H.; Walker, G.M.; Allen, S.J.; Ahmad, M.N.M. (2011) Retention of toxic chromium from aqueous phase by H3po4-activated lignin: effect of salts and desorption studies. Desalination, 274: 64. doi:10.1016/j.desal.2011.01.079
  • Naushad, M.; Ahamad, T.; Sharma, G.; Al-Muhtaseb, A.A.H.; Albadarin, A.B.; Alam, M.M.; Alothman, Z.A.; Alshehri, S.M.; Ghfar, A.A. (2016) Synthesis and characterization of a new starch/Sno2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal, 300: 306. doi:10.1016/j.cej.2016.04.084
  • Ning, P.; Bart, H.-J.; Li, B.; Lu, X.; Zhang, Y. (2008) Phosphate removal from wastewater by model-La(Iii) zeolite adsorbents. Journal of Environmental Sciences, 20: 670. doi:10.1016/S1001-0742(08)62111-7
  • Ge, Y.; Song, Q.; Li, Z. (2015) A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution. Journal of Industrial and Engineering Chemistry, 23: 228. doi:10.1016/j.jiec.2014.08.021
  • Nair, V.; Panigrahy, A.; Vinu, R. (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal, 254: 491. doi:10.1016/j.cej.2014.05.045
  • Klapiszewski, Ł.; Bartczak, P.; Wysokowski, M.; Jankowska, M.; Kabat, K.; Jesionowski, T. (2015) Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chemical Engineering Journal, 260: 684. doi:10.1016/j.cej.2014.09.054
  • Ge, Y.; Xiao, D.; Li, Z.; Cui, X. (2014) Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. Journal of Materials Chemistry. A, 2: 2136. doi:10.1039/C3TA14333C
  • Luo, X.; Lei, X.; Cai, N.; Xie, X.; Xue, Y.; Yu, F. (2016) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustainable Chemistry & Engineering, 4: 3960. doi:10.1021/acssuschemeng.6b00790

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.