309
Views
14
CrossRef citations to date
0
Altmetric
Adsorption

Removal of Pb(ii) ions from aqueous solution using a novel composite adsorbent of Fe3o4/PVA/spent coffee grounds

, , , & ORCID Icon
Pages 3070-3081 | Received 23 Feb 2018, Accepted 10 Dec 2018, Published online: 17 Jan 2019

References

  • Geraldes, V.; Carvalho, M.; Goncalves-Rosa, N.; Tavares, C.; Laranjo, S.; Rocha, I. (2016) Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity. Neurotoxicology, 54: 170–177. doi:10.1016/j.neuro.2016.04.016
  • Liu, W.; Tian, J.; Chen, L.; Guo, Y. (2017) Temporal and spatial characteristics of lead emissions from the lead-acid battery manufacturing industry in China. Environmental Pollution, 220: 696–703. doi:10.1016/j.envpol.2016.10.031
  • Trama-Freitas, B.; Freitas, J.C.S.; Martins, R.C.; Gando-Ferreira, L.M.; Quinta-Ferreira, M.E.; Quinta-Ferreira, R.M.; Do Carmo, D.R. (2017) A study of bio-hybrid silsesquioxane/yeast: biosorption and neuronal toxicity of lead. Journal of Biotechnology, 264: 43–50. doi:10.1016/j.jbiotec.2017.10.015
  • Thuan, L.V.; Chau, T.B.; Ngan, T.T.K.; Vu, T.X.; Nguyen, D.D.; Nguyen, M.H.; Thao, D.T.T.; To Hoai, N.; Sinh, L.H. (2017) Preparation of cross-linked magnetic chitosan particles from steel slag and shrimp shells for removal of heavy metals. Environmental Technology, 1–8 (accepted). doi:10.1080/09593330.2017.1337236
  • Ajay, K.M.;. (2016) Smart Materials for Waste Water Applications, Scrivener Publishing LLC: Salem, MA. doi:10.1002/9781119041214
  • Gerçel, Ö.; Gerçel, H.F. (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chemical Engineering Journal, 132: 289–297. doi:10.1016/j.cej.2007.01.010
  • Bhatnagar, A.; Sillanpää, M. (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 157: 277–296. doi:10.1016/j.cej.2010.01.007
  • Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.C.; Kyzas, G.Z. (2017) A review for coffee adsorbents. Journal of Molecular Liquids, 229: 555–565. doi:10.1016/j.molliq.2016.12.096
  • Dhir, B.;. (2014) Potential of biological materials for removing heavy metals from wastewater. Environmental Science and Pollution Research, 21: 1614–1627. doi:10.1007/s11356-013-2230-8
  • Hao, L.; Wang, P.; Valiyaveettil, S. (2017) Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents. Sciencific Reports, 7: 42881. doi:10.1038/srep42881
  • Gomez-Gonzalez, R.; Cerino-Córdova, F.J.; Garcia-León, A.M.; Soto-Regalado, E.; Davila-Guzman, N.E.; Salazar-Rabago, J.J. (2016) Lead biosorption onto coffee grounds: comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. Journal of the Taiwan Institute of Chemical Engineers, 68: 201–210. doi:10.1016/j.jtice.2016.08.038
  • Kyzas, G.Z.;. (2012) Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials, 5: 1826–1840. doi:10.3390/ma5101826
  • Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H. (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 184: 126–134. doi:10.1016/j.jhazmat.2010.08.014
  • Low, J.H.; Rahman, W.A.W.A.; Jamaluddin, J. (2015) The influence of extraction parameters on spent coffee grounds as a renewable tannin resource. Journal of Cleaner Production, 101: 222–228. doi:10.1016/j.jclepro.2015.03.094
  • Low, J.H.; Rahman, W.A.W.A.; Jamaluddin, J. (2015) Structural elucidation of tannins of spent coffee grounds by CP-MAS 13C NMR and MALDI-TOF MS. Industrial Crops and Products, 69: 456–461. doi:10.1016/j.indcrop.2015.03.001
  • Nabais, J.M.V.; Nunes, P.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; García, A.M.; Díaz-Díez, M.A. (2008) Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 89: 262–268. doi:10.1016/j.fuproc.2007.11.030
  • Ambashta, R.D.; Sillanpää, M. (2010) Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180: 38–49. doi:10.1016/j.jhazmat.2010.04.10
  • Zhang, S.; Zhang, Y.; Liu, J.; Xu, Q.; Xiao, H.; Wang, X.; Xu, H.; Zhou, J. (2013) Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal, 226: 30–38. doi:10.1016/j.cej.2013.04.060
  • Lu, A.-H.; Salabas, E.L.; Schüth, F. (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46: 1222–1244. doi:10.1002/anie.200602866
  • Yan, E.; Cao, M.; Jiang, J.; Gao, J.; Jiang, C.; Ba, X.; Yang, X.; Zhang, D. (2017) A novel adsorbent based on magnetic Fe3O4 contained polyvinyl alcohol/chitosan composite nanofibers for chromium (VI) removal. Solid State Sciences, 72: 94–102. doi:10.1016/j.solidstatesciences.2017.08.014
  • Zuorro, A.; Lavecchia, R. (2013) Preparation and characterization of magnetically responsive biosorbents from coffee industry residues. Applied Mechanics and Materials, 394: 3–7. doi:10.4028/www.scientific.net/AMM.394.3
  • Dai, Y.; Zhang, D.; Zhang, K. (2016) Nitrobenzene-adsorption capacity of NaOH-modified spent coffee ground from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 68: 232–238. doi:10.1016/j.jtice.2016.08.042
  • Amici, J.; Allia, P.; Tiberto, P.; Sangermano, M. (2011) Poly(ethylene glycol)-coated Fe3O4 nanoparticles by UV-Thiol-Ene addition of PEG dithiol on vinyl-functionalized magnetite surface. Macromolecular Chemistry and Physics, 212: 1629–1635. doi:10.1002/macp.201100072
  • Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7: 3493–3503. doi:10.1007/s11947-014-1349-z
  • Wang, S.; Wang, C.; Zhang, B.; Sun, Z.; Li, Z.; Jiang, X.; Bai, X. (2010) Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Materials Letters, 64: 9–11. doi:10.1016/j.matlet.2009.09.043
  • Giri, S.K.; Das, N.N.; Pradhan, G.C. (2011) Magnetite powder and kaolinite derived from waste iron ore tailings for environmental applications. Powder Technology, 214: 513–518. doi:10.1016/j.powtec.2011.09.017
  • Pal, K.; Banthia, A.K.; Majumdar, D.K. (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech, 8: e142–146. doi:10.1208/pt080121
  • Tang, C.-M.; Tian, Y.-H.; Hsu, S.-H. (2015) Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials, 8: 4895–4911. doi:10.3390/ma8084895
  • Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F. (2004) X-ray diffraction analysis of Poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules, 37: 1921–1927. doi:10.1021/ma035663q
  • Momčilović, M.; Purenović, M.; Bojić, A.; Zarubica, A.; Ranđelović, M. (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276: 53–59. doi:10.1016/j.desal.2011.03.013
  • Utomo, H.D.; Hunter, K.A. (2006) Adsorption of Divalent Copper, Zinc, Cadmium and Lead Ions from aqueous solution by waste tea and coffee adsorbents. Environmental Technology, 27: 25–32. doi:10.1080/09593332708618619
  • Wu, C.-H.; Kuo, C.-Y.; Guan, -S.-S. (2016) Adsorption of heavy metals from aqueous solutions by waste coffee residues: kinetics, equilibrium, and thermodynamics. Desalination and Water Treatment, 57: 5056–5064. doi:10.1080/19443994.2014.1002009
  • Chen, J.P.; Wu, S.; Chong, K.-H. (2003) Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 41: 1979–1986. doi:10.1016/S0008-6223(03)00197-0
  • Le, V.T.; Doan, V.D.; Nguyen, D.D.; Nguyen, H.T.; Ngo, Q.P.; Tran, T.K.N.; Le, H.S. (2018) A novel cross-linked magnetic hydroxyapatite/Chitosan Composite: preparation, characterization, and application for Ni(II) ion removal from aqueous solution. Water, Air, & Soil Pollution, 229: 101. doi:10.1007/s11270-018-3762-9
  • Zhu, H.Y.; Fu, Y.Q.; Jiang, R.; Jiang, J.H.; Xiao, L.; Zeng, G.M.; Zhao, S.L.; Wang, Y. (2011) Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 173: 494–502. doi:10.1016/j.cej.2011.08.020
  • Chavan, A.A.; Pinto, J.; Liakos, I.; Bayer, I.S.; Lauciello, S.; Athanassiou, A.; Fragouli, D. (2016) Spent coffee bioelastomeric composite foams for the removal of Pb2+ and Hg2+ from water. ACS Sustainable Chemistry & Engineering, 4: 5495–5502. doi:10.1021/acssuschemeng.6b01098
  • Boudrahem, F.; Soualah, A.; Aissani-Benissad, F. (2011) Pb(II) and Cd(II) removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride. Journal of Chemical & Engineering Data, 56: 1946–1955. doi:10.1021/je1009569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.