232
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of nanofiltration ceramic membranes using alumina doped with spent siliceous material from chemical industry

, , , , &
Pages 1502-1511 | Received 07 Jul 2018, Accepted 07 Jan 2019, Published online: 28 Jan 2019

References

  • Lin, Y.; Burggraaf, A. (1992). CVD of solid oxides in porous substrates for ceramic membrane modification. AIChE Journal. doi:10.1002/aic.690380313
  • Lin, Y.; Burggraaf, A. (1993). Experimental studies on pore size change of porous ceramic membranes after modification. Journal of Membrane Science, (79): 65. doi:10.1016/0376-7388(93)85018-R
  • Amin, S.; Abdallah, H.; Roushdy, M.; El-Sherbiny, S. (2016). An overview of production and development of ceramic membranes. International Journal of Applied Engineering Research ISSN 0973-4562, 11 (12): 7708.
  • Albano, M.; Genova, L.; Garrido, L.; Plucknett, K. (2008). Processing of porous yttria-stabilized zirconia by tape-casting. Ceramics International, (34): 1983. doi:10.1016/j.ceramint.2007.07.028
  • Huang, W.; Gao, J.; Winnubst, L.; Chen, C. (2014). Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes. Journal of Membrane Science, 452: 294. doi:10.1016/j.memsci.2013.09.063
  • Bouzerara, F.; Harabi, A.; Achour, S.; Larbot, A. (2006). Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. Journal of the European Ceramic Society, 26: 1663. doi:10.1016/j.jeurceramsoc.2005.03.244
  • Lin, Y.; Vries, J.; Burggraaf, J. (1991). Thermal stability and its improvement of the alumina membrane top-layers prepared by sol-gel methods. Journal of Materials Science, 26 (3): 715. doi:10.1007/BF00588309
  • Xu, Q.; Anderson, M. (1994). Sol-gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO2 and ZrO2 xerogels. Journal of the American Ceramic Society,
  • Kumar, N.; Suvarna, P.; Naidu, K. (2018). Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y=0.2–0.8) nanoparticles: structural, morphological and dielectric properties. Ceramics International, 44: 18189. doi:10.1016/j.ceramint.2018.07.027
  • Kothandan, D.; Kumar, R.; Prakash, M.; Naidu, K. (2018). Structural, morphological and optical properties of Ba1-xCuxTiO3 (X = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Materials Chemistry and Physics, 215: 310. doi:10.1016/j.matchemphys.2018.05.052
  • Kumar, N.; Suvarna, P.; Naidu, K.; Ranjith, K.; Ramesh, S. (2018). Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8 Co0.2-zLazTiO3 (z=0.05–0.2) nanoparticles. Ceramics International, 44: 19408. doi:10.1016/j.ceramint.2018.07.176
  • Prasad, T.;. (2018). Effect of ph value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Material Research Express, in press. doi:10.1088/2053-1591/aad860
  • Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499: 65. doi:10.1016/j.memsci.2015.10.049
  • Liu, S.; Gavalas, G. (2005). Oxygen selective ceramic hollow fiber membranes. Journal of Membrane Science, 246: 103. doi:10.1016/j.memsci.2004.09.028
  • Monash, P.; Pugazhenthi, G. (2011). Effect of TiO2 addition on the fabrication of ceramic membrane supports: A study on the separation of oil droplets and bovine serum albumin (BSA) from its solution. Desalination, 279: 104. doi:10.1016/j.desal.2011.05.065
  • Belibi, P.; Nguemtchouin, M.; Rivallin, M.; Ndinsami, J.; Sieliechic, J.; Cerneaux, S.; Ngassoum, M.; Cretin, M. (2015). Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment. Ceramics International, l41: 2752. doi:10.1016/j.ceramint.2014.10.090
  • Mittal, P.; Jana, S.; Mohanty, K. (2011). Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater. Desalination, 282: 54. doi:10.1016/j.desal.2011.06.071
  • Cao, J.; Dong, X.; Li, L.; Dong, Y.; Hampshire, S. (2014). Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. Journal of the European Ceramic Society, 34: 3181. doi:10.1016/j.jeurceramsoc.2014.04.011
  • Bose, S.; Das, C. (2013). Preparation and characterization of low cost tubular ceramic support membranes using sawdust as a pore-former. Materials Letters, 110: 152. doi:10.1016/j.matlet.2013.08.019
  • Dong, Y.; Liu, X.; Ma, Q.; Meng, G. (2006). Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. Journal of Membrane Science, 285: 173. doi:10.1016/j.memsci.2006.08.032
  • Zhu, Y.; Xia, S.; Liu, G.; Jin, W. (2010). Preparation of ceramic-supported poly (vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. Journal of Membrane Science, 349: 341. doi:10.1016/j.memsci.2009.11.065
  • Cerneaux, S.; Struzynska, I.; Kujawski, W.; Persin, M.; Larbot, A. (2009). Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. Journal of Membrane Science, 337: 55. doi:10.1016/j.memsci.2009.03.025
  • Akhtar, F.; Rehman, Y.; Bergstrom, L. (2010). A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength. Powder Technology, 201: 253. doi:10.1016/j.powtec.2010.04.004
  • Saponjic, A.; Stankovic, M.; Majstorovic, J.; Matovica, B.; Ilic, S.; Egelja, A.; Kokunesoski, M. (2015). Porous ceramic monoliths based on diatomite. Ceramics International, 41: 9745. doi:10.1016/j.ceramint.2015.04.046
  • Tsai, W.; Hsien, K.; Yang, J. (2004). Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. Journal of Colloid and Interface Science, 275: 428. doi:10.1016/j.jcis.2004.02.093
  • Li, E.; Zeng, Y.; Fan, Y. (2009). Removal of chromium ion (III) from aqueous solution by manganese oxide and micro-emulsion modified diatomite. Desalination, 238: 158. doi:10.1016/j.desal.2007.11.062
  • Benito, J.; Conesa, A.; Rubio, F.; Rodrıguez, M. (2005). Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions. Journal of the European Ceramic Society, 25: 1895. doi:10.1016/j.jeurceramsoc.2004.06.016
  • Vishista, K.; Gnanam, F. (2004). Role of deflocculants on the rheological properties of boehmite sol. Materials Letters, 58 (10): 1576. doi:10.1016/j.matlet.2003.10.029
  • Liu, Q.; Wang, A.; Wang, X.; Zhang, T. (2007). Morphologically controlled synthesis of mesoporous alumina. Microporous and Mesoporous Materials, 100 (1): 23: 35. doi:10.1016/j.micromeso.2006.10.011
  • Darcovich, K.; Toll, F.; Meurk, A. (2001). Sintering effects on the porous characteristics of functionally gradient ceramic membrane structures. Journal of Porous Materials, 8: 201. doi:10.1023/A:1012284522672
  • Kokunesoski, M.; Saponjic, A.; Stankovic, M.; Majstorovic, J.; Egelja, A.; Ilic, S.; Matovic, B. (2016). Effect of boric acid on the porosity of clay and diatomite monoliths. Ceramics International, 42: 6383. doi:10.1016/j.ceramint.2016.01.034
  • Xu, L.; Li, W.; Lua, S.; Wang, Z.; Zhu, Q.; Ling, Y. (2002). Treating dyeing waste water by ceramic membrane in cross flow microfiltration. Desalination, 149: 199. doi:10.1016/S0011-9164(02)00759-2
  • Dong, Y.; Zhou, J.; Lin, B.; Wang, Y.; Wang, S.; Miao, L.; Lang, Y.; Liu, X.; Meng, G. (2009). Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. Journal of Hazardous Materials, 172: 180. doi:10.1016/j.jhazmat.2009.06.148
  • Prabhakaran, K.; Melkeri, A.; Gokhale, N.; Sharma, S. (2007). Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent. Ceramics International, 33: 77. doi:10.1016/j.ceramint.2005.07.020
  • Sarkar, R.; Mallick, M. (2018). Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials. Bulletin of Materials Science, 41: 31. doi:10.1007/s12034-017-1533-7
  • Ismail, M.; Tsunatori, H.; Nakai, Z. (1990). Preparation of MgO-doped mullite by sol-gel method, powder characteristics and sintering. Journal of Material Science, 25: 2619. doi:10.1007/BF00638068
  • Heraiz, M.; Merrouche, A.; Saheb, N. (2006). Effect of MgO addition and sintering parameters on mullite formation through reaction sintering kaolin and alumina. Advances in Applied Ceramics Structural, Functional and Bioceramics, 105: 285. doi:10.1179/174367606X146676
  • Ha, J.; Oh, E.; Song, I. (2013). The fabrication and characterization of sintered diatomite for potential microfiltration applications. Ceramics International, 39: 7641. doi:10.1016/j.ceramint.2013.02.102
  • Li, J.; Cui, M.; Tian, F.; Wu, H.; Zha, F.; Feng, H.; Tang, X. (2017). Facile fabrication of anti-corrosive superhydrophobic diatomite coatings for removal oil from harsh environments. Separation and Purification Technology, 189: 335. doi:10.1016/j.seppur.2017.08.024
  • Dong, Y.; Feng, X.; Dong, D.; Wang, S.; Yang, J.; Gao, J.; Liu, L.; Meng, G. (2007). Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. Journal of Membrane Science, 304 (1–2): 65. doi:10.1016/j.memsci.2007.06.058
  • Hulbert, S.; Huff, D. (1970). Kinetics of alumina removal from a calcined kaolin with nitric, sulphuric and hydrochloric acids. Clay Minerals, 8: 337. doi:10.1180/claymin.1970.008.3.11
  • Wu, L.; He, Y.; Jiang, Y.; Zeng, Y.; Xiao, Y.; Nan, B. (2014). Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Transaction of Nonferrous Metal Society of China, 24: 3509. doi:10.1016/S1003-6326(14)63495-6
  • Cheng, X.; Li, N.; Zhu, M.; Zhang, L.; Deng, Y.; Deng, C. (2016). Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption. Journal of Environmental Sciences. doi:10.1016/j.jes.2015.11.018
  • Kawiecka-Skowron,; Majewska-Nowak, J. (2011). Effect of dye content in a treated solution on performance of the UF ceramic membrane. Environment Protection Engineering, 37: 2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.