163
Views
15
CrossRef citations to date
0
Altmetric
Adsorption

Artificial neural network and multiple linear regression for modeling sorption of Pb2+ ions from aqueous solutions onto modified walnut shell

, , , &
Pages 222-233 | Received 29 Nov 2017, Accepted 02 Jan 2019, Published online: 01 Mar 2019

References

  • Adewuyi, A.; Pereira, F.V. (2017) Underutilized Luffa cylindrical sponge: a local bio-adsorbent for the removal of Pb (II) pollutant from water system. Beni-Suef University Journal of Basic and Applied Sciences, 6: 118–126. doi:10.1016/j.bjbas.2017.02.001
  • Safinejad, A.; Chamjangali, M.A.; Goudarzi, N.; Bagherian, G. (2017) Synthesis and characterization of a new magnetic bio-adsorbent using walnut shell powder and its application in ultrasonic assisted removal of lead. Journal of Environmental Chemical Engineering, 5 (2): 1429–1437. doi:10.1016/j.jece.2017.02.027
  • Yao, S.; Zhang, J.; Shen, D.; Xiao, R.; Gu, S.; Zhao, M.; Liang, J. (2016) Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of Colloid and Interface Science, 463: 118–127. doi:10.1016/j.jcis.2015.10.047
  • Wang, Y.; Li, L.; Luo, C.; Wang, X.; Duan, H. (2016) Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. International Journal of Biological Macromolecules, 86: 505–511. doi:10.1016/j.ijbiomac.2016.01.035
  • OuYang, X.-K.; Jin, R.-N.; Yang, L.-P.; Wen, Z.-S.; Yang, L.-Y.; Wang, Y.-G.; Wang, C.Y. (2014) Partially hydrolyzed bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb (II) from aqueous mixtures. Journal of Agricultural and Food Chemistry, 62 (25): 6007–6015. doi:10.1021/jf5015846
  • Nguyen, T.; Ngo, H.; Guo, W.; Zhang, J.; Liang, S.; Yue, Q.; Li, Q.; Nguyen, T. (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, 148: 574–585. doi:10.1016/j.biortech.2013.08.124
  • Ashrafi, M.; Chamjangali, M.A.; Bagherian, G.; Goudarzi, N. (2017) Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe3O4 impregnated onto walnut shell. Spectrochim Acta Part A, 171: 268–279. doi:10.1016/j.saa.2016.07.049
  • Asfaram, A.; Ghaedi, M.; Yousefi, F.; Dastkhoon, M. (2016) Experimental design and modeling of ultrasound assisted simultaneous adsorption of cationic dyes onto ZnS: Mn-NPs-AC from binary mixture. Ultrasonics Sonochemistry, 33: 77–89. doi:10.1016/j.ultsonch.2016.04.016
  • Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 259: 438–448. doi:10.1016/j.cej.2014.08.019
  • Chen, B.; Liu, Y.; Chen, S.; Zhao, X.; Meng, X.; Pan, X. (2016) Magnetically recoverable cross-linked polyethylenimine as a novel adsorbent for removal of anionic dyes with different structures from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 67: 191–201. doi:10.1016/j.jtice.2016.07.014
  • Wang, X.S.; Li, Z.Z.; Tao, S.R. (2009) Removal of chromium(VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90: 721–729. doi:10.1016/j.jenvman.2008.01.011
  • Altun, T.; Pehlivan, E. (2012) Removal of Cr (VI) from aqueous solutions by modified walnut shells. Food Chemistry, 132: 693–700. doi:10.1016/j.foodchem.2011.10.099
  • Ding, D.; Zhao, Y.; Yang, S.; Shi, W.; Zhang, Z.; Lei, Z.; Yang, Y. (2013) Adsorption of cesium from aqueous solution using agricultural residue – walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Research, 47: 2563–2571. doi:10.1016/j.watres.2013.02.014
  • Yang, J.; Qiu, K. (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165: 209–217. doi:10.1016/j.cej.2010.09.019
  • Celekli, A.; Birecikligil, S.S.; Geyik, F.; Bozkurt, H. (2012) Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource Technology, 103: 64–70. doi:10.1016/j.biortech.2011.09.106
  • Çelekli, A.; Bozkurt, H.; Geyik, F. (2016) Artificial neural network and genetic algorithms for modeling of removal of an azo dye on walnut husk. Desalination and Water Treatment, 57: 15580–15591. doi:10.1080/19443994.2015.1070759
  • Cao, J.-S.; Lin, J.-X.; Fang, F.; Zhang, M.-T.; Hu, Z.-R. (2014) A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresource Technology, 163: 199–205. doi:10.1016/j.biortech.2014.04.046
  • Ehlert, G.J.; Lin, Y.; Sodano, H.A. (2011) Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon, 49 (13): 4246–4255. doi:10.1016/j.carbon.2011.05.057
  • Parveen, N.; Zaidi, S.; Danish, M. (2017) Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr (VI). Process Safety and Environmental Protection, 107: 428–437. doi:10.1016/j.psep.2017.03.007
  • Azqhandi, M.A.; Ghaedi, M.; Yousefi, F.; Jamshidi, M. (2017) Application of random forest, radial basis function neural networks and central composite design for modeling and/or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC. Journal of Colloid and Interface Science, 550: 278–292. doi:10.1016/j.jcis.2017.05.098
  • Mahmoodi, N.M.; Hosseinabadi-Farahani, Z.; Chamani, H. (2017) Synthesis of nanoadsorbent and modeling of dye removal from wastewater using adaptive neuro-fuzzy inference system. Desalination and Water Treatment, 75: 245–252. doi:10.5004/dwt.2017
  • Ndazi, B.S.; Karlsson, S.; Tesha, J.; Nyahumwa, C. (2007) Chemical and physical modifications of rice husks for use as composite panels. Composites Part A: Applied Science and Manufacturing, 38 (3): 925–935. doi:10.1016/j.compositesa.2006.07.004
  • Hokkanen, S.; Repo, E.; Sillanpää, M. (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223: 40–47. doi:10.1016/j.cej.2013.02.054
  • Ashrafi, M.; Bagherian, G.; Chamjangali, M.; Goudarzi, N. (2018) Application of artificial neural network and random forest methods for modeling simultaneous adsorption of safranin-O and methyl violet dyes onto modified pine cone powder. Desalination and Water Treatment, 109: 90–103. doi:10.5004/dwt
  • Foroughi-Dahr, M.; Abolghasemi, H.; Esmaieli, M.; Nazari, G.; Rasem, B. (2015) Experimental study on the adsorptive behavior of Congo red in cationic surfactant-modified tea waste. Process Safety and Environmental Protection, 95: 226–236. doi:10.1016/j.psep.2015.03.005
  • Saeed, A.; Sharif, M.; Iqbal, M. (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials, 179 (1): 564–572. doi:10.1016/j.jhazmat.2010.03.041
  • Chadlia, A.; Mohamed, K.; Najah, L. (2009) Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants. Journal of Hazardous Materials, 172 (2): 1579–1590. doi:10.1016/j.jhazmat.2009.08.030
  • Liu, C.; Sun, R.; Qin, M.; Zhang, A.; Ren, J.; Ye, J.; Luo, W.; Cao, Z. (2008) Succinoylation of sugarcane bagasse under ultrasound irradiation. Bioresource Technology, 99 (5): 1465–1473. doi:10.1016/j.biortech.2007.01.062
  • Petrović, M.; Šoštarić, T.; Stojanović, M.; Milojković, J.; Mihajlović, M.; Stanojević, M.; Stanković, S. (2016) Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal of the Taiwan Institute of Chemical Engineers, 58: 407–416. doi:10.1016/j.jtice.2015.06.025
  • Ramos, S.N.; Xavier, A.; Teodoro, F.; Gil, F.; Gurgel, L. (2016) Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono-and multicomponent adsorption in batch mode. Industrial Crops and Products, 79: 116–130. doi:10.1016/j.indcrop.2015.10.035
  • Slimani, R.; El Ouahabi, I.; Abidi, F.; El Haddad, M.; Regti, A.; Laamari, M.R.; El Antri, S.; Lazar, S. (2014) Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis. Journal of the Taiwan Institute of Chemical Engineers, 45: 1578–1587. doi:10.1016/j.jtice.2013.10.009
  • Kamari, A.; Yusoff, S.N.M.; Abdullah, F.; Putra, W.P. (2014) Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: adsorption and characterisation studies. Journal of Environmental Chemical Engineering, 2 (4): 1912–1919. doi:10.1016/j.jece.2014.08.014
  • Sari, A.; Tuzen, M. (2014) Cd (II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 88: 63–72. doi:10.1016/j.clay.2013.12.021
  • Mall, I.; Srivastava, V.; Kumar, G.; Mishra, I. (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278 (1): 175–187. doi:10.1016/j.colsurfa.2005.12.017
  • Ferreira, B.C.S.; Teodoro, F.S.; Mageste, A.B.; Gil, L.F.; de Freitas, R.P.; Gurgel, L.V.A. (2015) Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: kinetic, equilibrium and thermodynamic studies. Industrial Crops and Products, 65: 521–534. doi:10.1016/j.indcrop.2014.10.020
  • Guo, J.-Z.; Li, B.; Liu, L.; Lv, K. (2014) Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere, 111: 225–231. doi:10.1016/j.chemosphere.2014.03.118
  • Mahmoodi, N.M. (2015) Surface modification of magnetic nanoparticle and dye removal from ternary systems. Journal of Industrial and Engineering Chemistry, 27: 251–259. doi:10.1016/j.jiec.2014.12.042
  • Gholivand, M.B.; Yamini, Y.; Dayeni, M.; Seidi, S.; Tahmasebi, E. (2015) Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. Journal of Environmental Chemical Engineering, 3 (1): 529–540. doi:10.1016/j.jece.2015.01.011
  • Gurgel, L.V.A.; de Freitas, R.P.; Gil, L.F. (2008) Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydrate Polymers, 74 (4): 922–929. doi:10.1016/j.carbpol.2008.05.023
  • Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. (2015) Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135: 479–490. doi:10.1016/j.saa.2014.06.138
  • Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B. (2016) Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue. Chemical Engineering Journal, 287: 545–556. doi:10.1016/j.cej.2015.11.059
  • Ngah, W.W.; Teong, L.; Hanafiah, M. (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83 (4): 1446–1456. doi:10.1016/j.carbpol.2010.11.004
  • Ghaedi, A.M.; Vafaei, A. (2017) Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review. Advances in Colloid and Interface Science, 245: 20–39. doi:10.1016/j.cis.2017.04.015
  • Çelekli, A.; Bozkurt, H.; Geyik, F. (2013) Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw. Bioresour Technology, 129: 396–401. doi:10.1016/j.biortech.2012.11.085
  • Brey, T.; Jarre-Teichmann, A.; Borlich, O. (1996) Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data. Marine Ecology Progress Series, 140: 251–256. doi:10.3354/meps140251
  • Chamjangali, M.A.; Ashrafi, M. (2013) QSAR study of necroptosis inhibitory activities (EC50) of [1, 2, 3] thiadiazole and thiophene derivatives using Bayesian regularized artificial neural network and calculated descriptors. Medicinal Chemistry Research, 22 (1): 392–400. doi:10.1007/s00044-012-0027-9
  • Ashrafi, M.; Chamjangali, M.; Bagherian, G.; Goudarzi, N.; Kavian, S. (2017) Evaluation of nanosilica, extracted from stem sweep, as a new adsorbent for simultaneous removal of crystal violet and methylene blue from aqueous solutions. Desalination and Water Treatment, 88: 207–220. doi:10.5004/dwt.2017.21425
  • Gevrey, M.; Dimopoulos, I.; Lek, S. (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160 (3): 249–264. doi:10.1016/S0304-3800(02)00257-0
  • Malekbala, M.R.; Hosseini, S.; Masoudi Soltani, S.; Malekbala, R.; Choong, T.S.; Eghbali Babadi, F. (2015) Development, application, and evaluation of artificial neural network in investigating the removal efficiency of Acid Red 57 by synthesized mesoporous carbon-coated monoliths. Desalination and Water Treatment, 56: 2246–2257. doi:10.1080/19443994.2014.959062
  • Yang, Y.; Wang, G.; Wang, B.; Li, Z.; Jia, X.; Zhou, Q.; Zhao, Y. (2011) Biosorption of acid black 172 and congo red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, 102: 828–834. doi:10.1016/j.biortech.2010.08.125

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.