893
Views
15
CrossRef citations to date
0
Altmetric
Water Treatment

Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 2112-2125 | Received 26 Nov 2018, Accepted 12 Apr 2019, Published online: 08 May 2019

References

  • Rijsberman, F.R.; Water scarcity: fact or fiction? Agricultural Water Management. 2006, 80, 5–22. doi:10.1016/j.agwat.2005.07.001
  • Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 2010, 23, 1696–1718. doi:10.1175/2009JCLI2909.1
  • Bar-Zeev, E.; Elimelech, M., Reverse osmosis biofilm dispersal by osmotic back-flushing: cleaning via substratum perforation. Environmental Science & Technology Letters 2014, 1, 162–166. doi:10.1021/ez400183d
  • Anderson, M.A.; Cudero, A.L.; Palma, J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochimica Acta 2010, 55, 3845–3856. doi:10.1016/j.electacta.2010.02.012
  • Semiat, R.; Energy issues in desalination processes. Environmental Science & Technology 2008, 42, 8193–8201.
  • Sharma, K.; Kim, Y.-H.; Gabitto, J.; Mayes, R.T.; Yiacoumi, S.; Bilheux, H.Z.; Walker, L.M.H.; Dai, S.; Tsouris, C. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions. Langmuir 2015, 31, 1038–1047. doi:10.1021/la5043102
  • Kim, Y.-H.; Park, L.; Yiacoumi, S.; Tsouris, C. Modular chemical process intensification: A review. Annual Review of Chemical and Biomolecular Engineering 2017, 8, 359–380. doi:10.1146/annurev-chembioeng-060816-101354
  • Welgemoed, T.; Schutte, C. Capacitive deionization technology™: an alternative desalination solution. Desalination 2005, 183, 327–340. doi:10.1016/j.desal.2005.02.054
  • Kim, Y.-J.; Choi, J.-H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology 2010, 71, 70–75. doi:10.1016/j.seppur.2009.10.026
  • Tsouris, C.; Mayes, R.; Kiggans, J.; Sharma, K.; Yiacoumi, S.; DePaoli, D.; Dai, S. Mesoporous carbon for capacitive deionization of saline water. Environmental Science & Technology 2011, 45, 10243–10249. doi:10.1021/es201551e
  • Li, Z.; Song, B.; Wu, Z.; Lin, Z.; Yao, Y.; Moon, K.S.; Wong, C.P. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 2015, 11, 711–718. doi:10.1016/j.nanoen.2014.11.018
  • Oren, Y.; Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 2008, 228, 10–29. doi:10.1016/j.desal.2007.08.005
  • Lee, J.-B.; Park, -K.-K.; Eum, H.-M.; Lee, C.-W. Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 2006, 196, 125–134. doi:10.1016/j.desal.2006.01.011
  • Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society 1996, 143, 159–169. doi:10.1149/1.1836402
  • Li, H.; Lu, T.; Pan, L.; Zhang, Y.Sun, Z. 2009. Electrosorption behavior of graphene in nacl solutions. Journal Of Materials Chemistry, 19(37),pp.6773–6779.
  • Li, H.; Zou, L.; Pan, L.; Sun, Z. Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology 2010, 75, 8–14. doi:10.1016/j.seppur.2010.07.003
  • He, D.; Wong, C.E.; Tang, W.; Kovalsky, P.; Waite, T.D. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environmental Science & Technology Letters 2016, 3, 222–226. doi:10.1021/acs.estlett.6b00124
  • Jung, H.H.; Hwang, S.W.; Hyun, S.H.; Lee, K.H.; Kim, G.T. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 2007, 216, 377–385. doi:10.1016/j.desal.2006.11.023
  • Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943. doi:10.1126/science.aab1595
  • AlMarzooqi, F.A.; Al Ghaferi, A.A.; Saadat, I.; Hilal, N. Application of capacitive deionisation in water desalination: a review. Desalination 2014, 342, 3–15. doi:10.1016/j.desal.2014.02.031
  • Vogt, H.; Balzer, R.J. The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochimica Acta 2005, 50, 2073–2079. doi:10.1016/j.electacta.2004.09.025
  • Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 2013, 58(8),pp.1388–1442. doi:10.1016/j.pmatsci.2013.03.005
  • Oxtoby, D.W.; Gillis, H.P.; Nachtrieb, N.H., Principles of Modern Chemistry, Thomson, Brooks, Cole, London, 5th edn, 2002, p. 419–420.
  • Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V. ACS Sustainable Chemistry & Engineering 2017, 5, 189–195. doi:10.1021/acssuschemeng.6b01212
  • Choi, J.H.; Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization. Desalination 2014, 347, 224–229. doi:10.1016/j.desal.2014.06.004
  • Knust, K.N.; Hlushkou, D.; Anand, R.K.; Tallarek, U.; Crooks, R.M. Electrochemically mediated seawater desalination. Angewandte Chemie 2013, 125, 8265–8268. doi:10.1002/ange.v125.31
  • Zhang, D.; Wen, X.; Shi, L.; Yan, T.Zhang, J., 2012. Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale, 4(17),pp.5440-5446. doi:10.1039/c2nr31154b
  • Tang, K.; Kim, Y.-H.; Chang, J.; Mayes, R.T.; Gabitto, J.; Yiacoumi, S.; Tsouris, C. Seawater desalination by over-potential membrane capacitive deionization: opportunities and hurdles. Chemical Engineering Journal 2019, 357, 103–111. doi:10.1016/j.cej.2018.09.121
  • Wang, Z.; Dou, B.; Zheng, L.; Zhang, G.; Liu, Z.; Hao, Z. Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 2012, 299, 96–102. doi:10.1016/j.desal.2012.05.028
  • Ulleberg, Ø.; Modeling of advanced alkaline electrolyzers: a system simulation approach. International Journal of Hydrogen Energy 2003, 28, 21–33. doi:10.1016/S0360-3199(02)00033-2
  • Michalak, B.; Sommer, H.; Mannes, D.; Kaestner, A.; Brezesinski, T.; Janek, J. Gas evolution in operating lithium-ion batteries studied in situ by neutron imaging. Scientific Reports 2015, 5, 15627. doi:10.1038/srep15627
  • Sharma, K.; Bilheux, H.Z.; Walker, L.M.H.; Voisin, S.; Mayes, R.T.; Kiggans, J.O., Jr; Yiacoumi, S.; DePaoli, D.W.; Dai, S.; Tsouris, C. Neutron imaging of ion transport in mesoporous carbon materials. Physical Chemistry Chemical Physics. 2013, 15, 11740–11747. doi:10.1039/c3cp51310f
  • Sharma, K.; Kim, Y.-H.; Yiacoumi, S.; Gabitto, J.; Bilheux, H.Z.; Santodonato, L.J.; Mayes, R.T.; Dai, S.; Tsouris, C. Analysis and simulation of a blue energy cycle. Renewable Energy 2016, 91, 249–260. doi:10.1016/j.renene.2016.01.044
  • Sears, V.F.; Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. doi:10.1080/10448639208218770
  • Bilheux, J.-C.; Bilheux, H. iMARS (iMaging Analysis Research Software). Physics Procedia 2015, 69, 343–348. doi:10.1016/j.phpro.2015.07.048
  • Bilheux, H.Z.; Cekanova, M.; Vass, A.A.; Nichols, T.L.; Bilheux, J.C.; Donnell, R.L.; Finochiarro, V. A novel approach to determine post mortem interval using neutron radiography. Forensic Science International 2015, 251, 11–21. doi:10.1016/j.forsciint.2015.02.017
  • Lee, J.H.; Bae, W.S.; Choi, J.H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 2010, 258, 159–163. doi:10.1016/j.desal.2010.03.020
  • Tang, W.; He, D.; Zhang, C.; Kovalsky, P.; Waite, T.D. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research 2017, 120, 229–237. doi:10.1016/j.watres.2017.05.009
  • Dykstra, J.E.; Keesman, K.J.; Biesheuvel, P.M.; Van der Wal, A. Theory of pH changes in water desalination by capacitive deionization. Water Research 2017, 119, 178–186. doi:10.1016/j.watres.2017.04.039
  • Langer, H.; Offermann, H., 1982. On the solubility of sodium chloride in water. Journal of Crystal Growth, 60(2),pp.389–392. doi:10.1016/0022-0248(82)90116-6
  • Długołęcki, P.; Nymeijer, K.; Metz, S.; Wessling, M. Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science 2008, 319, 214–222. doi:10.1016/j.memsci.2008.03.037
  • Biesheuvel, P.M.; Activated carbon is an electronconducting amphoteric ion adsorbent. arXiv:1509.06354, 2015.
  • Biesheuvel, P.M.; Porada, S.; Levi, M.; Bazant, M.Z. Attractive forces in microporous carbon electrodes for capacitive deionization. Journal of Solid State Electrochemistry 2014, 18, 1365–1376. doi:10.1007/s10008-014-2383-5
  • Abdel-Aal, H.K.; Sultan, S.M.; Hussein, I.A. Parametric study for saline water electrolysis: part II—chlorine evolution, selectivity and determination. International Journal of Hydrogen Energy 1993, 18, 545–551. doi:10.1016/0360-3199(93)90172-7
  • Simons, R.; Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes. Electrochimica Acta 1984, 29, 151–158. doi:10.1016/0013-4686(84)87040-1
  • Simons, R.; Water splitting in ion exchange membranes. Electrochimica Acta 1985, 30, 275–282. doi:10.1016/0013-4686(85)80184-5
  • Długołęcki, P.; Ogonowski, P.; Metz, S.J.; Saakes, M.; Nijmeijer, K.; Wessling, M., 2010. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1–2), pp.369–379. doi:10.1016/j.memsci.2009.11.069
  • Gabelich, C.J.; Tran, T.D.; Suffet, I.H.M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental Science & Technology 2002, 36, 3010–3019.
  • Chen, G.; Delafuente, D.A.; Sarangapani, S.; Mallouk, T.E., 2001. Combinatorial discovery of bifunctional oxygen reduction—water oxidation electrocatalysts for regenerative fuel cells. Catalysis Today, 67(4),pp.341–355. doi:10.1016/S0920-5861(01)00327-3
  • Cabaniss, G.E.; Diamantis, A.A.; Murphy, W.R., Jr; Linton, R.W.; Meyer, T.J., 1985. Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes. Journal of the American Chemical Society, 107 (7),pp.1845–1853. doi:10.1021/ja00293a007
  • Tse, E.C.; Varnell, J.A.; Hoang, T.T.; Gewirth, A.A., 2016. Elucidating proton involvement in the rate-determining step for Pt/Pd-based and non-precious-metal oxygen reduction reaction catalysts using the kinetic isotope effect. The Journal of Physical Chemistry Letters, 7(18),pp.3542–3547. doi:10.1021/acs.jpclett.6b01235
  • Paris, A.; Verbitskiy, N.; Nefedov, A.; Wang, Y.; Fedorov, A.; Haberer, D.; Oehzelt, M.; Petaccia, L.; Usachov, D.; Vyalikh, D.; Sachdev, H., 2013. Kinetic isotope effect in the hydrogenation and deuteration of graphene. Advanced Functional Materials, 23(13),pp.1628–1635. doi:10.1002/adfm.201202355
  • Brown, G.M.; Meyer, T.J., 2001. Utilization of Kinetic Isotope Effects for the Concentration of Tritium. EMSP No. 55103, U.S. Department of Energy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.