311
Views
13
CrossRef citations to date
0
Altmetric
Adsorption

Melanoidin removal from molasses wastewater using graphene oxide nanosheets

ORCID Icon & ORCID Icon
Pages 2281-2293 | Received 05 Feb 2019, Accepted 29 May 2019, Published online: 26 Jun 2019

References

  • Chandra, R.; Bharagava, R. N.; Rai, V. Melanoidins as Major Colourant in Sugarcane Molasses Based Distillery Effluent and Its Degradation. Bioresour. Technol. 2008, 99(11), 4648–4660. DOI: 10.1016/j.biortech.2007.09.057.
  • Patel, T. M.;. Mitigation of Flux Decline in the Cross-Flow Nanofiltration of Molasses Wastewater under the Effect of Gas Sparging AU - Nath, Kaushik. Sep. Sci. Technol. 2014, 49(10), 1479–1489. DOI: 10.1080/01496395.2014.895766.
  • Asadi, M.;. Sugarbeet Processing Beet-Sugar Handbook; John Wiley & Sons, Inc, 2005. DOI: 10.1002/0471790990.
  • Migo, V. P.; Matsumura, M.; Del Rosario, E. J.; Kataoka, H. Decolorization of Molasses Wastewater Using an Inorganic Flocculant. J. Ferment. Bioeng. 1993, 75(6), 438–442. DOI: 10.1016/0922-338X(93)90092-M.
  • Cämmerer, B.; Kroh, L. W. Investigation of the Influence of Reaction Conditions on the Elementary Composition of Melanoidins. Food Chem. 1995, 53(1), 55–59. DOI: 10.1016/0308-8146(95)95786-6.
  • Migo, V. P.; Matsumura, M.; Del Rosario, E. J.; Kataoka, H. The Effect of pH and Calcium Ions on the Destabilization of Melanoidin. J. Ferment. Bioeng. 1993, 76(1), 29–32.
  • Dolphen, R.; Thiravetyan, P. Adsorption of Melanoidins by Chitin Nanofibers. Chem. Eng. J.. 2011, 166(3), 890–895.
  • Santal, A. R.; Singh, N. P.; Saharan, B. S. A Novel Application of Paracoccus Pantotrophus for the Decolorization of Melanoidins from Distillery Effluent under Static Conditions. J. Environ. Manage. 2016, 169, 78–83.
  • Arimi, M. M.; Zhang, Y.; Geißen, S.-U. Color Removal of Melanoidin-Rich Industrial Effluent by Natural Manganese Oxides. Sep. Purif. Technol. 2015, 150, 286–291.
  • Kim, S. B.; Hayase, F.; Kato, H. Decolorization and Degradation Products of Melanoidins on Ozonolysis. Agric Biol Chem. 1985, 49(3), 785–792.
  • Coca, M.; Peña, M.; González, G. Kinetic Study of Ozonation of Molasses Fermentation Wastewater. J. Hazard. Mater. 2007, 149(2), 364–370. DOI: 10.1016/j.jhazmat.2007.04.006.
  • Liang, Z.; Wang, Y.; Zhou, Y.; Liu, H. Coagulation Removal of Melanoidins from Biologically Treated Molasses Wastewater Using Ferric Chloride. Chem. Eng. J. 2009, 152(1), 88–94. DOI: 10.1016/j.cej.2009.03.036.
  • Bernal, M.; Ruiz, M. O.; Geanta, R. M.; Benito, J. M.; Escudero, I. Colour Removal from Beet Molasses by Ultrafiltration with Activated Charcoal. Chem. Eng. J. 2016, 283, 313–322. DOI: 10.1016/j.cej.2015.07.047.
  • Dwyer, J.; Lant, P. Biodegradability of DOC and DON for UV/H2O2 Pre-Treated Melanoidin Based Wastewater. Biochem. Eng. J. 2008, 42(1), 47–54. DOI: 10.1016/j.bej.2008.05.016.
  • Kobya, M.; Delipinar, S. Treatment of the Baker’s Yeast Wastewater by Electrocoagulation. J. Hazard. Mater. 2008, 154(1–3), 1133–1140. DOI: 10.1016/j.jhazmat.2007.11.019.
  • Satyawali, Y.; Balakrishnan, M. Wastewater Treatment in Molasses-Based Alcohol Distilleries for COD and Color Removal: A Review. J. Environ. Manage. 2008, 86(3), 481–497. DOI: 10.1016/j.jenvman.2006.12.024.
  • Simaratanamongkol, A.; Thiravetyan, P. Decolorization of Melanoidin by Activated Carbon Obtained from Bagasse Bottom Ash. J. Food Eng. 2010, 96(1), 14–17. DOI: 10.1016/j.jfoodeng.2009.06.033.
  • Ojijo, V. O.; Ochieng, M.; Otieno, F, A. Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash. World Academy of Science, Engineering and Technology, International Science Index 37. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2010, 4(1), 58–64.
  • Onyango, M. S.; Kittinya, J.; Hadebe, N.; Ojijo, V. O.; Ochieng, A. Sorption of Melanoidin onto Surfactant Modified Zeolite. Chem. Ind. Chem. Eng. Q. 2011, 17(14), 385–394. DOI: 10.2298/CICEQ110125025O.
  • Satyawali, Y.; Balakrishnan, M. Removal of Color from Biomethanated Distillery Spentwash by Treatment with Activated Carbons. Bioresour. Technol. 2007, 98(14), 2629–2635. DOI: 10.1016/j.biortech.2006.09.016.
  • Ramezani, A.; Darzi, G.; Mohammadi, M. Removal of Melanoidin from Molasses Spent Wash Using Fly Ash-Clay Adsorbents. Korean J. Chem. Eng. 2011, 28(4), 1035–1041. DOI: 10.1007/s11814-010-0474-2.
  • Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368(1), 540–546. DOI: 10.1016/j.jcis.2011.11.015.
  • Wang, J.; Chen, B. Adsorption and Coadsorption of Organic Pollutants and a Heavy Metal by Graphene Oxide and Reduced Graphene Materials. Chem. Eng. J. 2015, 281, 379–388. DOI: 10.1016/j.cej.2015.06.102.
  • Wang, X.; Yu, S.; Jin, J.; Wang, H.; Alharbi, N. S.; Alsaedi, A.; Hayat, T.; Wang, X. Application of Graphene Oxides and Graphene Oxide-Based Nanomaterials in Radionuclide Removal from Aqueous Solutions. Sci. Bull. 2016, 61(20), 1583–1593. DOI: 10.1007/s11434-016-1168-x.
  • Ge, L.; Peng, Z.; Wang, W.; Tan, F.; Wang, X.; Su, B.; Qiao, X.; Wong, P. K. g-C3N4/MgO Nanosheets: Light-Independent, Metal-Poisoning-Free Catalysts for the Activation of Hydrogen Peroxide to Degrade Organics. J. Mater. Chem. A. 2018, 6(34), 16421–16429. DOI: 10.1039/C8TA05488F.
  • Ge, L.; Wang, W.; Peng, Z.; Tan, F.; Wang, X.; Chen, J.; Qiao, X. Facile Fabrication of Fe@MgO Magnetic Nanocomposites for Efficient Removal of Heavy Metal Ion and Dye from Water. Powder Technol. 2018, 326, 393–401. DOI: 10.1016/j.powtec.2017.12.003.
  • Yue, Y.; Peng, Z.; Wang, W.; Cai, Y.; Tan, F.; Wang, X.; Qiao, X. Facile Preparation of MgO-loaded SiO2 Nanocomposites for Tetracycline Removal from Aqueous Solution. Powder Technol. 2019, 347, 1–9. DOI: 10.1016/j.powtec.2019.02.034.
  • Kotsiopoulou, N. G.; Liakos, T. I.; Lazaridis, N. K. Melanoidin Chromophores and Betaine Osmoprotectant Separation from Aqueous Solutions. J. Mol. Liq. 2016, 216, 496–502. DOI: 10.1016/j.molliq.2016.01.063.
  • Wang, T.; Zhou, Y.; Xie, W.; Chen, L.; Zheng, H.; Fan, L. Preparation and Anticoagulant Activity of N-Succinyl Chitosan Sulfates. Int. J. Biol. Macromol. 2012, 51(5), 808–814. DOI: 10.1016/j.ijbiomac.2012.07.029.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon. 2007, 45(7), 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130(47), 15802–15804. DOI: 10.1021/ja808001a.
  • Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B. 2000, 61(20), 14095–14107. DOI: 10.1103/PhysRevB.61.14095.
  • Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv.Mate. 2008, 20(23), 4490–4493. DOI: 10.1002/adma.v20:23.
  • Chen, J.; Cui, X.; Wang, Q.; Wang, H.; Zheng, X.; Liu, C.; Xue, T.; Wang, S.; Zheng, W. One-Pot Photochemical Synthesis of Ultrathin Au Nanocrystals on Co-Reduced Graphene Oxide and Its Application. J. Colloid Interface Sci. 2012, 383(1), 140–147. DOI: 10.1016/j.jcis.2012.06.007.
  • Yu, W.; Xie, H.; Wang, X.; Wang, X. Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide. Nanoscale Res. Lett. 2010, 6(1), 47. DOI: 10.1007/s11671-010-9779-7.
  • Rafigh, S. M.; Heydarinasab, A. Mesoporous Chitosan–SiO2 Nanoparticles: Synthesis, Characterization, and CO2 Adsorption Capacity. ACS Sustainable Chem. Eng. 2017, 5(11), 10379–10386. DOI: 10.1021/acssuschemeng.7b02388.
  • Rafigh, S. M.; Heydarinasab, A. Hydroxyethyl Curdlan as a Novel Water Soluble Derivative: Synthesis, Characterization, and Antioxidant Capacity. Int. J. Polym. Anal. Charact. 2017, 22(6), 497–508. DOI: 10.1080/1023666X.2017.1331390.
  • Wu, T.; Wang, X.; Qiu, H.; Gao, J.; Wang, W.; Liu, Y. Graphene Oxide Reduced and Modified by Soft Nanoparticles and Its Catalysis of the Knoevenagel Condensation. J. Mater. Chem. 2012, 22(11), 4772–4779. DOI: 10.1039/c2jm15311d.
  • Zhang, L.; Li, X.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. Controlled Synthesis of Few-Layered Graphene Sheets on a Large Scale Using Chemical Exfoliation. Carbon. 2010, 48(8), 2367–2371. DOI: 10.1016/j.carbon.2010.02.035.
  • Zhang, L.; Liang, J.; Huang, Y.; Ma, Y.; Wang, Y.; Chen, Y. Size-Controlled Synthesis of Graphene Oxide Sheets on a Large Scale Using Chemical Exfoliation. Carbon. 2009, 47(14), 3365–3368. DOI: 10.1016/j.carbon.2009.07.045.
  • Figaro, S.; Avril, J. P.; Brouers, F.; Ouensanga, A.; Gaspard, S. Adsorption Studies of Molasse’s Wastewaters on Activated Carbon: Modelling with a New Fractal Kinetic Equation and Evaluation of Kinetic Models. J. Hazard. Mater. 2009, 161(2–3), 649–656. DOI: 10.1016/j.jhazmat.2008.04.006.
  • Li, H.; Huang, G.; An, C.; Hu, J.; Yang, S. Removal of Tannin from Aqueous Solution by Adsorption onto Treated Coal Fly Ash: Kinetic, Equilibrium, and Thermodynamic Studies. Ind. Eng. Chem. Res. 2013, 52(45), 15923–15931. DOI: 10.1021/ie402054w.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Namasivayam, C.; Kavitha, D. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dyes Pigm. 2002, 54(1), 47–58. DOI: 10.1016/S0143-7208(02)00025-6.
  • Ahmad, M. A.; Ahmad Puad, N. A.; Bello, O. S. Kinetic, Equilibrium and Thermodynamic Studies of Synthetic Dye Removal Using Pomegranate Peel Activated Carbon Prepared by Microwave-Induced KOH Activation. Water Resour. Ind. 2014, 6, 18–35. DOI: 10.1016/j.wri.2014.06.002.
  • Liakos, T. I.; Lazaridis, N. K. Melanoidins Removal from Simulated and Real Wastewaters by Coagulation and Electro-Flotation. Chem. Eng. J. 2014, 242, 269–277. DOI: 10.1016/j.cej.2014.01.003.
  • Miranda, M. P.; Benito, G. G.; Cristobal, N. S.; Nieto, C. H. Color Elimination from Molasses Wastewater by Aspergillus Niger. Bioresour. Technol. 1996, 57(3), 229–235. DOI: 10.1016/S0960-8524(96)00048-X.
  • Bello, O. S.; Siang, T. T.; Ahmad, M. A. Adsorption of Remazol Brilliant Violet-5R Reactive Dye from Aqueous Solution by Cocoa Pod Husk-Based Activated Carbon: Kinetic, Equilibrium and Thermodynamic Studies. Asia-Pac. J. Chem. Eng. 2012, 7(3), 378–388. DOI: 10.1002/apj.v7.3.
  • Treybal, R. E.;. Mass-Transfer Operations, Third ed.; McGraw-Hill, 1980.
  • Lagergren, S.;. About the Theory of so Called Adsorption of Soluble Substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Weber, W. J. A. M. J. C.;. Kinetics of Adsorption Carbon from Solutions. J. Sanitary Eng. Division Proc. 1963, 89, 31–60.
  • Rafigh, S. M.; Yazdi, A. V.; Vossoughi, M.; Safekordi, A. A.; Ardjmand, M. Optimization of Culture Medium and Modeling of Curdlan Production from Paenibacillus Polymyxa by RSM and ANN. Int. J. Biol. Macromol. 2014, 70, 463–473. DOI: 10.1016/j.ijbiomac.2014.07.034.
  • Ma, J.; Jia, Y.; Jing, Y.; Yao, Y.; Sun, J. Kinetics and Thermodynamics of Methylene Blue Adsorption by Cobalt-Hectorite Composite. Dyes Pigm. 2012, 93(1–3), 1441–1446. DOI: 10.1016/j.dyepig.2011.08.010.
  • Kyzas, G. Z.; Matis, K. A. Nanoadsorbents for Pollutants Removal: A Review. J. Mol. Liq. 2015, 203, 159–168. DOI: 10.1016/j.molliq.2015.01.004.
  • Langmuir, I.;. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H.; Heller, W. The Adsorption of Cis- and trans-Azobenzene. J. Am. Chem. Soc. 1939, 61(8), 2228–2230. DOI: 10.1021/ja01877a071.
  • Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2.-Theoretical Models. J. Chem. Soc., Faraday Trans. 1. 1977, 73, 456–464. DOI: 10.1039/f19777300456.
  • Rafigh, S. M.; Vaziri Yazdi, A.; Safekordi, A. A.; Heydari Nasab, A.; Ardjmand, M.; Naderi, F.; Mozafari, H. Protein Adsorption Using Novel Carboxymethyl-Curdlan Microspheres. Int. J. Biol. Macromol. 2016, 87, 603–610. DOI: 10.1016/j.ijbiomac.2016.03.008.
  • Daneshyar, A.; Ghaedi, M.; Sabzehmeidani, M. M.; Daneshyar, A. H2S Adsorption onto Cu-Zn–Ni Nanoparticles Loaded Activated Carbon and Ni-Co Nanoparticles Loaded γ-Al2O3: Optimization and Adsorption Isotherms. J. Colloid Interface Sci. 2017, 490, 553–561.
  • Bello, O. S.; Ahmad, M. A.; Ahmad, N. Adsorptive Features of Banana (Musa Paradisiaca) Stalk-Based Activated Carbon for Malachite Green Dye Removal. Chem. Ecol. 2012, 28(2), 153–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.