291
Views
26
CrossRef citations to date
0
Altmetric
Adsorption

Adsorptive removal of alizarin dye from wastewater using maghemite nanoadsorbents

ORCID Icon & ORCID Icon
Pages 2433-2448 | Received 17 Dec 2018, Accepted 18 Jun 2019, Published online: 30 Jun 2019

References

  • Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), 2017.
  • Postel, S.;. The Last Oasis: Facing Water Scarcity; Routledge, New York, NY, 10017, USA, 2014.
  • Feng, Y.; Yang, L.; Liu, J.; Logan, B. E. Electrochemical Technologies for Wastewater Treatment and Resource Reclamation. Environ. Sci. 2016, 2(5), 800–831.
  • Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresour. Technol. 2001, 77(3), 247–255.
  • El-Qanni, A.; Nassar, N. N.; Vitale, G.; Hassan, A. Maghemite Nanosorbcats for Methylene Blue Adsorption and Subsequent Catalytic Thermo-Oxidative Decomposition: Computational Modeling and Thermodynamics Studies. J. Colloid Interface Sci. 2016, 461, 396–408. DOI: 10.1016/j.jcis.2015.09.041.
  • Nassar, N. N.;. Kinetics, Mechanistic, Equilibrium, and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater by γ-Fe2O3 Nanoadsorbents. Sep. Sci. Technol. 2010, 45(8), 1092–1103. DOI: 10.1080/01496391003696921.
  • The Current Status of Industrial Sector in Palestine. In The Palestinian Federation of Industries: 2009.
  • Bahram, M.; Asadi, S.; Karimnezhad, G. Synthesized Poly Styrene-Alt-Maleic Acid Hydrogel for Removal of Azo Dyes, Methylene Blue and Methyl Orange, from Aqueous Media. J. Iran. Chem. Soc. 2015, 12(4), 639–645. DOI: 10.1007/s13738-014-0522-7.
  • Hassaan, M. A.; El Nemr, A. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. Eng. 2017, 1(3), 64–67.
  • Kant, R.;. Textile Dyeing Industry an Environmental Hazard. Nat. Sci. 2012, 4(1), 22–26. DOI: 10.4236/ns.2012.41004.
  • Ngah, W. W.; Hanafiah, M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99(10), 3935–3948. DOI: 10.1016/j.biortech.2007.06.011.
  • Nassar, N. N.;. The Application of Nanoparticles for Wastewater Remediation; Applications of Nanomaterials for Water Quality. Future Science Book Series: Future Science Ltd; 2013. p. 52-65
  • Yang, R. T.;. Adsorbents: Fundamentals and Applications; Wiley-Interscience: Hoboken,N.J, 2003.
  • Qu, X.; Alvarez, P. J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47(12), 3931–3946. DOI: 10.1016/j.watres.2012.09.058.
  • Nassar, N. N.;. Rapid Removal and Recovery of Pb (II) from Wastewater by Magnetic Nanoadsorbents. J. Hazard. Mater. 2010, 184(1–3), 538–546. DOI: 10.1016/j.jhazmat.2010.08.069.
  • Carlos, L.; Einschlag, F. S. G.; González, M. C.; Mártire, D. O. Applications of Magnetite Nanoparticles for Heavy Metal Removal from Wastewater. In Waste Water-Treatment Technologies and Recent Analytical Developments; InTech, 2013.
  • Marei, N. N.; Nassar, N. N.; Hmoudah, M.; El-Qanni, A.; Vitale, G.; Hassan, A. Nanosize Effects of NiO Nanosorbcats on Adsorption and Catalytic Thermo-Oxidative Decomposition of Vacuum Residue Asphaltenes. Can. J. Chem. Eng. 2017, In Press. DOI:10.1002/cjce.22884.
  • Bien, H. S.; Stawitz, J.; Wunderlich, K. Anthraquinone Dyes and Intermediates. Ullmann’s Encyclopedia of Industrial Chemistry, 2000, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. DOI:10.1002/14356007.a02_355
  • Adams, J. J.;. Asphaltene Adsorption, a Literature Review. Energy Fuels. 2014, 28(5), 2831–2856. DOI: 10.1021/ef500282p.
  • Badran, I.; Nassar, N. N.; Marei, N. N.; Hassan, A. Theoretical and Thermogravimetric Study on the Thermo-Oxidative Decomposition of Quinolin-65 as an Asphaltene Model Molecule. RSC Adv. 2016, 6(59), 54418–54430. DOI: 10.1039/C6RA07761G.
  • Ercoli, N.; Lewis, M. The Age Factor in the Response of Bone Tissue to Alizarin Dyes and the Mechanism of Dye Fixation. Anat. Rec. 1943, 87(1), 67–76. DOI: 10.1002/(ISSN)1097-0185.
  • Pirillo, S.; Pedroni, V.; Rueda, E.; Luján Ferreira, M. Elimination of Dyes from Aqueous Solutions Using Iron Oxides and Chitosan as Adsorbents: A Comparative Study. Quím. Nova. 2009, 32(5), 1239–1244. DOI: 10.1590/S0100-40422009000500030.
  • Fayazi, M.; Ghanei-Motlagh, M.; Taher, M. A. The Adsorption of Basic Dye (Alizarin Red S) from Aqueous Solution onto Activated carbon/γ-Fe2O3 Nano-Composite: Kinetic and Equilibrium Studies. Mater. Sci. Semicond. Process. 2015, 40, 35–43. DOI: 10.1016/j.mssp.2015.06.044.
  • Fu, F.; Gao, Z.; Gao, L.; Li, D. Effective Adsorption of Anionic Dye, Alizarin Red S, from Aqueous Solutions on Activated Clay Modified by Iron Oxide. Ind. Eng. Chem. Res. 2011, 50(16), 9712–9717. DOI: 10.1021/ie200524b.
  • Gholivand, M. B.; Yamini, Y.; Dayeni, M.; Seidi, S.; Tahmasebi, E. Adsorptive Removal of Alizarin red-S and Alizarin Yellow GG from Aqueous Solutions Using Polypyrrole-Coated Magnetic Nanoparticles. J. Environ. Chem. Eng. 2015, 3(1), 529–540. DOI: 10.1016/j.jece.2015.01.011.
  • Machado, F. M.; Carmalin, S. A.; Lima, E. C.; Dias, S. L.; Prola, L. D.; Saucier, C.; Jauris, I. M.; Zanella, I.; Fagan, S. B. Adsorption of Alizarin Red S Dye by Carbon Nanotubes: An Experimental and Theoretical Investigation. J. Phys. Chem. C. 2016, 120(32), 18296–18306. DOI: 10.1021/acs.jpcc.6b03884.
  • Absalan, G.; Bananejad, A.; Ghaemi, M. Removal of Alizarin Red and Purpurin from Aqueous Solutions Using Fe3O4 Magnetic Nanoparticles. Anal. Bioanal. Chem. Res. 2017, 4(1), 65–77. DOI: 10.22036/abcr.2017.41099
  • Sips, R.;. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16(5), 490–495. DOI: 10.1063/1.1746922.
  • Zyoud, A. H.; Zaatar, N.; Saadeddin, I.; Ali, C.; Park, D.; Campet, G.; Hilal, H. S. CdS-sensitized TiO2 in Phenazopyridine Photo-Degradation: Catalyst Efficiency, Stability and Feasibility Assessment. J. Hazard. Mater. 2010, 173(1–3), 318–325. DOI: 10.1016/j.jhazmat.2009.08.093.
  • Bharathi, K.; Ramesh, S. Removal of Dyes Using Agricultural Waste as Low-Cost Adsorbents: A Review. Appl. Water Sci. 2013, 3(4), 773–790. DOI: 10.1007/s13201-013-0117-y.
  • Uheida, A.; Salazar-Alvarez, G.; Björkman, E.; Yu, Z.; Muhammed, M. Fe3O4 and γ-Fe2O3 Nanoparticles for the Adsorption of Co2+ from Aqueous Solution. J. Colloid Interface Sci. 2006, 298(2), 501–507. DOI: 10.1016/j.jcis.2005.12.057.
  • Jarlbring, M.; Gunneriusson, L.; Hussmann, B.; Forsling, W. Surface Complex Characteristics of Synthetic Maghemite and Hematite in Aqueous Suspensions. J. Colloid Interface Sci. 2005, 285(1), 212–217. DOI: 10.1016/j.jcis.2004.11.005.
  • Qiu, H.; Lv, L.; Pan, B.-C.; Zhang, Q.-J.; Zhang, W.-M.; Zhang, Q.-X. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. Sci. A. 2009, 10(5), 716–724. DOI: 10.1631/jzus.A0820524.
  • Ho, Y. S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76(4), 332–340. DOI: 10.1205/095758298529696.
  • Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70(2), 115–124. DOI: 10.1016/S0923-0467(98)00076-1.
  • Origin, Version 8.5. OriginLab Corporation, Northampton, MA, USA.
  • Lü, Z.; Hu, F.; Li, H.; Zhang, X.; Yu, S.; Liu, M.; Gao, C. Composite Nanofiltration Membrane with Asymmetric Selective Separation Layer for Enhanced Separation Efficiency to Anionic Dye Aqueous Solution. J. Hazard. Mater. 2019, 368, 436–443. DOI: 10.1016/j.jhazmat.2019.01.086.
  • Adeogun, A. I.; Balakrishnan, R. B. Electrocoagulation Removal of Anthraquinone Dye Alizarin Red S from Aqueous Solution Using Aluminum Electrodes: Kinetics, Isothermal and Thermodynamics Studies. J. Electrochem. Sci. Eng. 2016, 6(2), 199–213.
  • Ma, S. S.; Gang Zhang, Y. Electrolytic Removal of Alizarin Red S by Fe/Al Composite Hydrogel Electrode for Electrocoagulation toward a New Wastewater Treatment. Environ. Sci. Pollut. Res. 2016, 23(22), 22771–22782. DOI: 10.1007/s11356-016-7483-6.
  • Mukherjee, T.; Das, P.; Ghosh, S. K.; Rahaman, M. Removal of Alizarin Red S from Wastewater: Optimizing the Process Parameters for Electrocoagulation Using Taguchi Method. Waste Water Recycling and Management, 2019, 239–249, Springer, Singapore: Singapore. DOI: 10.1007/978-981-13-2619-6_19
  • Worch, E.;. Adsorption Technology in Water Treatment: Fundamentals, Processes, and modeling. 2012. Berlin, Germany: De Gruyter.
  • Ngah, W. W.; Hanafiah, M. Biosorption of Copper Ions from Dilute Aqueous Solutions on Base Treatedrubber (Hevea Brasiliensis) Leaves Powder: Kinetics, Isotherm, and Biosorption Mechanisms. J Environ Sci. 2008, 20(10), 1168–1176. DOI: 10.1016/S1001-0742(08)62205-6.
  • Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22(2), 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.
  • Worch, E.;. Adsorption Technology in Water Treatment: Fundamentals, processes, and modeling. 2012. Berlin, Germany: De Gruyter.
  • Allen, S.; Mckay, G.; Porter, J. F. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems. J. Colloid Interface Sci. 2004, 280(2), 322–333. DOI: 10.1016/j.jcis.2004.08.078.
  • Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156(1), 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • Kumara, N.; Hamdan, N.; Petra, M. I.; Tennakoon, K. U.; Ekanayake, P. Equilibrium Isotherm Studies of Adsorption of Pigments Extracted from Kuduk-Kuduk (Melastoma Malabathricum L.) Pulp onto TiO2 Nanoparticles. J. Chem. 2014. DOI: 10.1155/2014/468975.
  • Eren, E.;. Removal of Lead Ions by Unye (Turkey) Bentonite in Iron and Magnesium Oxide-Coated Forms. J. Hazard. Mater. 2009, 165(1–3), 63–70. DOI: 10.1016/j.jhazmat.2008.09.066.
  • Alkan, M.; Demirbaş, Ö.; Celikcapa, S.; Doğan, M. Sorption of Acid Red 57 from Aqueous Solution onto Sepiolite. J. Hazard. Mater. 2004, 116(1–2), 135–145. DOI: 10.1016/j.jhazmat.2004.08.003.
  • Juang, R.; Wu, F.; Tseng, R. The Ability of Activated Clay for the Adsorption of Dyes from Aqueous Solutions. Environ. Technol. 1997, 18(5), 525–531. DOI: 10.1080/09593331808616568.
  • Yu, Y.; Zhuang, -Y.-Y.; Wang, Z.-H. Adsorption of Water-Soluble Dye onto Functionalized Resin. J. Colloid Interface Sci. 2001, 242(2), 288–293. DOI: 10.1006/jcis.2001.7780.
  • McBride, M.B. Environmental chemistry of soils. 1994 . Oxford University Press, Inc., New York
  • Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L. Spectrometric Identification of Organic Compounds; John Wiley & Sons, 2014.
  • Pirillo, S.; Ferreira, M. L.; Rueda, E. H. The Effect of pH in the Adsorption of Alizarin and Eriochrome Blue Black R onto Iron Oxides. J. Hazard. Mater. 2009, 168(1), 168–178. DOI: 10.1016/j.jhazmat.2009.02.007.
  • Tong, Z.; Zheng, P.; Bai, B.; Wang, H.; Suo, Y. Adsorption Performance of Methyl Violet via α-Fe2O3@ Porous Hollow Carbonaceous Microspheres and Its Effective Regeneration through a Fenton-Like Reaction. Catalysts. 2016, 6(4), 58. DOI: 10.3390/catal6040058.
  • Marei, N. N.; Nassar, N. N.; Hmoudah, M.; El‐Qanni, A.; Vitale, G.; Hassan, A. Nanosize Effects of NiO Nanosorbcats on Adsorption and Catalytic Thermo‐Oxidative Decomposition of Vacuum Residue Asphaltenes. Can. J. Chem. Eng. 2017, 95(10), 1864–1874. DOI: 10.1002/cjce.v95.10.
  • Saeed, K.; Zada, N.; Khan, I. Photocatalytic Degradation of Alizarin Red Dye in Aqueous Medium Using Carbon nanotubes/Cu–Ti Oxide Composites. In Separation Science and Technology, 2018; pp 1–9. doi:10.1080/01496395.2018.1552296.
  • Navgire, M. E.; Lande, M. K. Effect of Nanocrystalline Composite Fullerene-Doped MoO3-TiO2 Material on Photoassisted Degradation of Alizarin Red S Dye. Inorg. Nano-Metal Chem. 2017, 47(3), 320–327. DOI: 10.1080/15533174.2016.1186055.
  • Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-irradiated Titania. Appl. Catal. B Environ. 2002, 39(1), 75–90. DOI: 10.1016/S0926-3373(02)00078-4.
  • Badran, I.; Hassan, A.; Manasrah, A. D.; Nassar, N. N. Experimental and Theoretical Studies on the Thermal Decomposition of Metformin. J. Therm. Anal. Calorim. 2019. DOI: 10.1007/s10973-019-08213-9.
  • Badran, I.; Manasrah, A. D.; Nassar, N. N. A Combined Experimental and Density Functional Theory Study of Metformin Oxy-Cracking for Pharmaceutical Wastewater Treatment. RSC Adv. 2019, 9(24), 13403–13413. DOI: 10.1039/C9RA01641D.
  • Aoudjit, F.; Cherifi, O.; Halliche, D. Simultaneously Efficient Adsorption and Photocatalytic Degradation of Sodium Dodecyl Sulfate Surfactant by One-Pot Synthesized TiO2/layered Double Hydroxide Materials. Sep. Sci. Technol. 2019, 54(7), 1095–1105. DOI: 10.1080/01496395.2018.1527352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.