157
Views
25
CrossRef citations to date
0
Altmetric
Adsorption

Modeling and optimization of process parameters in elucidating the adsorption mechanism of Gallic acid on activated carbon prepared from date stones

, ORCID Icon, ORCID Icon, , , & show all
Pages 3113-3125 | Received 08 Jun 2019, Accepted 02 Oct 2019, Published online: 18 Oct 2019

References

  • Abbas, M.; Saeed, F.; Anjum, F. M.; Afzaal, M.; Tufail, T.; Bashir, M. S.; Ishtiaq, A.; Hussain, S.; Suleria, H. A. R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. DOI: doi.10.1080/10942912.2016.1220393.
  • Capasso, R.; Evidente, A.; Schivo, L.; Orru, G.; Marcialis, M.; Cristinzio, G. Antibacterial Polyphenols from Olive Oil Mill Waste Waters. J. Appl. Bacteriol. 1995, 79, 393–398. DOI: 10.1111/j.1365-2672.1995.tb03153.x.
  • Gharsallah, N.; Labat, M.; Aloui, F.; Sayadi, S. The Effect of Phanerochaete Chrysosporium Pretreatment of Olive Mill Waste Waters on Anaerobic Digestion. Resour. Conserv. Recycl. 1999, 27, 187–192. DOI: 10.1016/S0921-3449(99)00013-0.
  • Asadgol, Z.; Forootanfar, H.; Rezaei, S.; Mahvi, A. H.; Faramarzi, M. A. Removal of Phenol and bisphenol-A Catalyzed by Laccase in Aqueous Solution. J. Environ. Health Sci. Eng. 2014, 12, 93. DOI: 10.1186/2052-336X-12-93.
  • Jaouad, Y.; Villain-Gambier, M.; Mandi, L.; Marrot, B.; Ouazzani, N. Key Process Parameters Involved in the Treatment of Olive Mill Wastewater by Membrane Bioreactor. Environ. Technol. 2019, 40(2019), 3162–3175. DOI: 10.1080/09593330.2018.1464064.
  • Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients. 2014, 6, 6020–6047. DOI: doi.10.3390/nu6126020.
  • Ahmaruzzaman, M.;. Adsorption of Phenolic Compounds on Low-cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48–67. DOI: 10.1016/j.cis.2008.07.002.
  • Hachicha, S.; Cegarra, J.; Sellami, F.; Hachicha, R.; Drira, N.; Medhioub, K.; Ammar, E. Elimination of Polyphenols Toxicity from Olive Mill Wastewater Sludge by Its Co-composting with Sesame Bark. J. Hazard. Mater. 2009, 161, 1131–1139. DOI: 10.1016/j.jhazmat.2008.04.066.
  • Li, W.; Li, X.; Zeng, K. Aerobic Biodegradation Kinetics of Tannic Acid in Activated Sludge System. Biochem. Eng. J. 2009, 43, 142–148. DOI: 10.1016/j.bej.2008.09.010.
  • Pan, B.; Meng, F.; Chen, X.; Pan, B.; Li, X.; Zhang, W.; Zhang, X.; Chen, J.; Zhang, Q.; Sun, Y. Application of an Effective Method in Predicting Breakthrough Curves of Fixed-bed Adsorption onto Resin Adsorbent. J. Hazard. Mater. 2005, 124, 74–80. DOI: 10.1016/j.jhazmat.2005.03.052.
  • Han, F.; Xu, C.; Sun, W.-Z.; Yu, S.-T.; Xian, M. Correction: Effective Removal of Salicylic and Gallic Acids from Single Component and Impurity-containing Systems Using an Isatin-modified Adsorption Resin. RSC Adv. 2017, 7, 26370. DOI: 10.1039/C7RA90064C.
  • Víctor-Ortega, M. D.; Airado-Rodríguez, D. Revalorization of Agro-industrial Effluents Based on Gallic Acid Recovery through a Novel Anionic Resin. Process Saf. Environ. Prot. 2018, 115, 17–26. DOI: 10.1016/j.psep.2017.08.017.
  • Adak, A.; Pal, A. Removal of Phenol from Aquatic Environment by SDS-modified Alumina: Batch and Fixed Bed Studies. Sep. Purif. Technol. 2006, 50, 256–262. DOI: 10.1016/j.seppur.2005.11.033.
  • Ahmat, A. M.; Thiebault, T.; Guégan, R. Phenolic Acids Interactions with Clay Minerals: A Spotlight on the Adsorption Mechanisms of Gallic Acid onto Montmorillonite. Appl. Clay Sci. 2019, 180, 105188. DOI: 10.1016/j.clay.2019.105188.
  • Houari, M.; Hamdi, B.; Brendle, J.; Bouras, O.; Bollinger, J.-C.; Baudu, M. Dynamic Sorption of Ionizable Organic Compounds (IOCs) and Xylene from Water Using Geomaterial-modified Montmorillonite. J. Hazard. Mater. 2007, 147, 738–745. DOI: doi.10.1016/j.jhazmat.2007.01.113.
  • Fan, S. L.; Huang, Z. Q.; Zhang, Y. J.; Hu, H. Y.; Liang, X. Q.; Gong, S. X.; Zhou, J.; Tu, R. Magnetic Chitosan-hydroxyapatite Composite Microspheres: Preparation, Characterization, and Application for the Adsorption of Phenolic Substances. Bioresour. Technol. 2019, 274, 48–55. DOI: 10.1016/j.biortech.2018.11.078.
  • Song, X. R.; Chai, Z. H.; Zhu, Y.; Li, C. L.; Liang, X. Q. Preparation and Characterization of Magnetic Chitosan-modified Diatomite for the Removal of Gallic Acid and Caffeic Acid from Sugar Solution. Carbohydr. Polym. 2019, 219, 316–327. DOI: 10.1016/j.carbpol.2019.04.043.
  • Theydan, S. K.; Ahmed, M. J. Optimization of Preparation Conditions for Activated Carbons from Date Stones Using Response Surface Methodology. Powder Technol. 2012, 224, 101–108. DOI: 10.1016/j.powtec.2012.02.037.
  • Richard, D.; Núñez, M. D. L. D.; Schweich, D. Adsorption of Complex Phenolic Compounds on Active Charcoal: Breakthrough Curves. Chem. Eng. J. 2010, 158, 213–219. DOI: 10.1016/j.cej.2009.12.044.
  • Goyal, M.; Dhawan, R.; Bhagat, M. Adsorption of Gallic Acid from Aqueous Solution Using Fixed Bed Activated Carbon Columns. Sep. Sci. Technol. 2010, 45, 1265–1274. DOI: 10.1080/01496391003688944.
  • Madureira, J.; Melo, R.; Verde, S. C.; Matos, I.; Bernardo, M.; Noronha, J. P.; Margaça, F.; Fonseca, I. M. Recovery of Phenolic Compounds from Multi-component Solution by a Synthesized Activated Carbon Using Resorcinol and Formaldehyde. Water Sci. Technol. 2018, 77, 456–466. DOI: 10.2166/wst.2017.555.
  • Pasalari, H.; Ghaffari, H. R.; Mahvi, A. H.; Pourshabanian, M.; Azari, A. Activated Carbon Derived from Date Stone as Natural Adsorbent for Phenol Removal from Aqueous Solution. Desalin. Water Treat. 2017, 72, 406–417. DOI: 10.5004/dwt.2017.20686.
  • Garcia-Araya, J. F.; Beltran, F. J.; Alvarez, P.; Masa, F. J. Activated Carbon Adsorption of Some Phenolic Compounds Present in Agroindustrial Wastewater. Adsorption. 2003, 9, 107–115. DOI: 10.1023/A:1024228708675.
  • Liu, F. F.; Wang, S. G.; Fan, J. L.; Ma, G. H. Adsorption of Natural Organic Matter Surrogates from Aqueous Solution by Multiwalled Carbon Nanotubes. J. Phys. Chem. C. 2012, 116, 25783−25789. DOI: 10.1021/jp307065e.
  • Taoufik, N.; Elmchaouri, A.; Anouar, F.; Korili, S. A.; Gil, A. Improvement of the Adsorption Properties of an Activated Carbon Coated by Titanium Dioxide for the Removal of Emerging Contaminants. J. Water Process Eng. 2019, 31, 100876. DOI: 10.1016/j.jwpe.2019.100876.
  • Lian, F.; Xing, B. Black Carbon (biochar) in Water/soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk. Environ. Sci. Technol. 2017, 51, 13517–13532. DOI: 10.1021/acs.est.7b02528.
  • Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J. L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. DOI: 10.1021/acs.est.7b06487.
  • Ouensanga, A.; Largitte, L.; Arsene, M.-A. The Dependence of Char Yield on the Amounts of Components in Precursors for Pyrolysed Tropical Fruit Stones and Seeds. Microporous Mesoporous Mater. 2003, 59, 85–91. DOI: 10.1016/S1387-1811(03)00288-9.
  • Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of Phenolic Compounds by Activated Carbon—A Critical Review. Chemosphere. 2005, 58, 1049–1070. DOI: doi.10.1016/j.chemosphere.2004.09.067.
  • Ioannidou, O.; Zabaniotou, A. Agricultural Residues as Precursors for Activated Carbon Production—A Review. Renewable Sustainable Energy Rev. 2007, 11, 1966–2005. DOI: 10.1016/j.rser.2006.03.013.
  • Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A Proposal for the Sustainable Treatment and Valorisation of Olive Mill Wastes. J. Environ. Chem. Eng. 2019, 7, 102803. DOI: 10.1016/j.jece.2018.11.047.
  • Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv.Mate. 2006, 18, 2073–2094. DOI: 10.1002/(ISSN)1521-4095.
  • Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Alvarez, P.; Alvim-Ferraz, M.; Dias, J. Activated Carbon Modifications to Enhance Its Water Treatment Applications. An Overview, J. Hazard. Mater. 2011, 187, 1–23. DOI: 10.1016/j.jhazmat.2011.01.033.
  • Caqueret, V.; Bostyn, S.; Cagnon, B.; Fauduet, H. Purification of Sugar Beet Vinasse–Adsorption of Polyphenolic and Dark Colored Compounds on Different Commercial Activated Carbons. Bioresour. Technol. 2008, 99, 5814–5821. DOI: 10.1016/j.biortech.2007.10.009.
  • Ferreira, S. C.; Bruns, R.; Ferreira, H.; Matos, G.; David, J.; Brandao, G.; Da Silva, E. P.; Portugal, L.; Dos Reis, P.; Souza, A. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741. DOI: doi.10.1080/10942912.2017.1354017.
  • Badhani, B.; Sharma, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv. 2015, 5, 27540–27557. DOI: 10.1039/C5RA01911G.
  • Djerouni, A.; Chala, A.; Benmehaia, A. A. S.; Baka, M. Evaluation of Male Palms Used in Pollination and the Extent of Its Relationship with Cultivars of Date-palms (phoenix Dactylifera L.) Grown in Region of Oued Righ, Algeria. Paki. J. Bot. 2015, 47, 2295–2300. http://www.pakbs.org/pjbot/PDFs/47(6)/31.pdf.
  • Ahmad, A.; Hameed, B. Effect of Preparation Conditions of Activated Carbon from Bamboo Waste for Real Textile Wastewater. J. Hazard. Mater. 2010, 173, 487–493. DOI: 10.1016/j.jhazmat.2009.08.111.
  • Boehm, H.;. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon. 1994, 32, 759–769. DOI: 10.1016/0008-6223(94)90031-0.
  • Boehm, H. P.;. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon. 2002, 40, 145–149. DOI: 10.1016/S0008-6223(01)00165-8.
  • Bouchelkia, N.; Mouni, L.; Belkhiri, L.; Bouzaza, A.; Bollinger, J.-C.; Madani, K.; Dahmoune, F. Removal of Lead (II) from Water Using Activated Carbon Developed from Jujube Stones, a Low-cost Sorbent. Sep. Sci. Technol. 2016, 51, 1645–1653. DOI: 10.1080/01496395.2016.1178289.
  • Baccar, R.; Bouzid, J.; Feki, M.; Montiel, A. Preparation of Activated Carbon from Tunisian Olive-waste Cakes and Its Application for Adsorption of Heavy Metal Ions. J. Hazard. Mater. 2009, 162, 1522–1529. DOI: 10.1016/j.jhazmat.2008.06.041.
  • Fiol, N.; Villaescusa, I. Determination of Sorbent Point Zero Charge: Usefulness in Sorption Studies. Environ. Chem. Lett. 2009, 7, 79–84. DOI: 10.1007/s10311-008-0139-0.
  • Georgé, S.; Brat, P.; Alter, P.; Amiot, M. J. Rapid Determination of Polyphenols and Vitamin C in Plant-derived Products. J. Agric. Food Chem. 2005, 53, 1370–1373. DOI: 10.1021/jf048396b.
  • Huguenin, J.; Ould Saad Hamady, S.; Bourson, P. Monitoring Deprotonation of Gallic Acid by Raman Spectroscopy. J. Raman Spectrosc. 2015, 46, 1062–1066. DOI: 10.1002/jrs.4752.
  • Bouchelta, C.; Medjram, M. S.; Bertrand, O.; Bellat, J.-P. Preparation and Characterization of Activated Carbon from Date Stones by Physical Activation with Steam. J. Anal. Appl. Pyrolysis. 2008, 82, 70–77. DOI: 10.1016/j.jaap.2007.12.009.
  • Balci, S.; Doǧu, T.; Yücel, H. Characterization of Activated Carbon Produced from Almond Shell and Hazelnut Shell. J. Chem. Technol. Biotechnol. 1994, 60, 419–426. DOI: 10.1002/jctb.280600413.
  • Li, L.; Quinlivan, P. A.; Knappe, D. R. Effects of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution. Carbon. 2002, 40, 2085–2100. DOI: 10.1016/S0008-6223(02)00069-6.
  • Belaid, O.; Bebba, A. A.; Sekirifa, M. L.; Baameur, L.; Al-Dujaili, A. H. Preparation and Characterization of Chemically Activated Carbons from Different Varieties of Date Stones. Desalin. Water Treat. 2017, 65, 267–273. DOI: 10.5004/dwt.2017.
  • El-Hendawy, A.-N. A.;. An Insight into the KOH Activation Mechanism through the Production of Microporous Activated Carbon for the Removal of Pb2+ Cations. Appl. Surf. Sci. 2009, 255, 3723–3730. DOI: 10.1016/j.apsusc.2008.10.034.
  • Ahmed, M. J.; Theydan, S. K. Equilibrium Isotherms, Kinetics and Thermodynamics Studies of Phenolic Compounds Adsorption on Palm-tree Fruit Stones. Ecotoxicol. Environ. Saf. 2012, 84, 39–45. DOI: 10.1016/j.ecoenv.2012.06.019.
  • Daniel, V. V.; Gulyani, B.; Prakash Kumar, B. Usage of Date Stones as Adsorbents: A Review. J. Dispersion Sci. Technol. 2012, 33, 1321–1331. DOI: 10.1080/01932691.2011.620532.
  • Danish, M.; Hashim, R.; Ibrahim, M. M.; Sulaiman, O. Optimized Preparation for Large Surface Area Activated Carbon from Date (phoenix Dactylifera L.) Stone Biomass. Biomass Bioenergy. 2014, 61, 167–178. DOI: 10.1016/j.biombioe.2013.12.008.
  • Abbas, A. F.; Ahmed, M. J. Mesoporous Activated Carbon from Date Stones (phoenix Dactylifera L.) By One-step Microwave Assisted K2CO3 Pyrolysis. J. Water Process Eng. 2016, 9, 201–207. DOI: 10.1016/j.jwpe.2016.01.004.
  • Ahmed, M. J.;. Preparation of Activated Carbons from Date (phoenix Dactylifera L.) Palm Stones and Application for Wastewater Treatments. Process Saf. Environ. Prot. 2016, 102, 168–182. DOI: 10.1016/j.psep.2016.03.010.
  • Cherik, D.; Louhab, K. Preparation of Microporous Activated Carbon from Date Stones by Chemical Activation Using Zinc Chloride. Energy Sources Part A. 2017, 39, 1935–1941. DOI: 10.1080/15567036.2017.1390012.
  • Everett, D.;. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 577–638. DOI: 10.1351/pac197231040577.
  • Lua, A. C.; Yang, T. Effect of Activation Temperature on the Textural and Chemical Properties of Potassium Hydroxide Activated Carbon Prepared from Pistachio-nut Shell. J. Colloid Interface Sci. 2004, 274, 594–601. DOI: 10.1016/j.jcis.2003.10.001.
  • Huang, Y.; Li, S.; Lin, H.; Chen, J. Fabrication and Characterization of Mesoporous Activated Carbon from Lemna Minor Using One-step H3PO4 Activation for Pb (II) Removal. Appl. Surf. Sci. 2014, 317, 422–431. DOI: 10.1016/j.apsusc.2014.08.152.
  • Radovic, L. R.; Moreno-Castilla, C.; Rivera-Utrilla, J. Carbon Materials as Adsorbents in Aqueous Solutions. Chem. Phys. Carbon. 2000, 27, 227–406. ISSN: 00693138
  • Tran, H. N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and Inconsistencies regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. DOI: 10.1016/j.watres.2017.04.014.
  • Ho, Y.-S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22, 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.
  • Weber, T. W.; Chakravorti, R. K. Pore and Solid Diffusion Models for Fixed-bed Adsorbents. Am. Inst. Chem. Eng. J. 1974, 20, 228–238. DOI: 10.1002/aic.690200204.
  • Zhou, X.; Zhou, X. The Unit Problem in the Thermodynamic Calculation of Adsorption Using the Langmuir Equation. Chem. Eng. Commun. 2014, 201, 1459–1467. DOI: 10.1080/00986445.2013.818541.
  • Salvestrini, S.; Leone, V.; Iovino, P.; Canzano, S.; Capasso, S. Considerations about the Correct Evaluation of Sorption Thermodynamic Parameters from Equilibrium Isotherms. J. Chem. Thermodyn. 2014, 68, 310–316. DOI: 10.1016/j.jct.2013.09.013.
  • McKay, G.;. Use of Adsorbents for the Removal of Pollutants from Wastewater; CRC Press: New York, 1995.
  • Babić, S.; Malev, O.; Pflieger, M.; Lebedev, A. T.; Mazur, D. M.; Kužić, A.; Čož-Rakovac, R.; Trebše, P. Toxicity Evaluation of Olive Oil Mill Wastewater and Its Polar Fraction Using Multiple Whole-organism Bioassays. Sci. Total Environ. 2019, 686, 903–914. DOI: 10.1016/j.scitotenv.2019.06.046.
  • Smeti, E.; Kalogianni, E.; Karaouzas, I.; Laschou, S.; Tornés, E.; De Castro-Català, N.; Anastasopoulou, E.; Koutsodimou, M.; Andriopoulou, A.; Vardakas, L.; et al. Effects of Olive Mill Wastewater Discharge on Benthic Biota in Mediterranean Streams. Environ. Pollut. 2019, 254, 113057. DOI: 10.1016/j.envpol.2019.113057.
  • El Yamani, M.; Sakar, E. H.; Boussakouran, A.; Ghabbour, N.; Rharrabti, Y. Physicochemical and Microbiological Characterization of Olive Mill Wastewater (OMW) from Different Regions of Northern Morocco. Environ. Technol., In the Press. 2019. DOI: 10.1080/09593330.2019.1597926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.