75
Views
2
CrossRef citations to date
0
Altmetric
Leaching

The recovery prediction of Zn and Pb from cerussite leaching using the fluoroboric acid by gene expression programming

, , &
Pages 194-202 | Received 11 Sep 2019, Accepted 20 Nov 2019, Published online: 24 Dec 2019

References

  • Habashi, F. Principles of Extractive Metallurgy; Routledge, 2017.
  • Sobouti, A.; Hoseinian, F. S.; Rezai, B.; Jalili, S. The Lead Recovery Prediction from Lead Concentrate by an Artificial Neural Network and Particle Swarm Optimization. Geosyst. Eng. 2019, 22(6), 1–9.
  • Bozzano, G.; Dente, M.; Pierucci, S.; Maccagni, M. Modeling and Simulation of the Production of Lead and Elementary Sulphur from Lead Sulphide Concentrates. Computer Aided Chemical Engineering; Elsevier, 2011; Vol. 29, pp 1733–1737.
  • Sobouti, A.; Rezai, B.; Hoseinian, F. S.; Moradkhani, D. Optimization and Kinetics Studies of Lead Concentrate Leaching Using Fluoroboric Acid. Physicochem Prob Mineral Process. 2019, 55(4), 1014–1027.
  • Golpayegani, M. H.; Abdollahzadeh, A. A. Optimization of Operating Parameters and Kinetics for Chloride Leaching of Lead from Melting Furnace Slag. Trans. Nonferrous Met. Soc. China. 2017, 27(12), 2704–2714. DOI: 10.1016/S1003-6326(17)60299-1.
  • Wu, D.; Cui, C.; Wen, S.; Deng, J. Kinetics of Cerussite Leaching in Sulfamic Acid Solution. J. Chem. Eng. Jpn. 2016, 49(5), 445–451. DOI: 10.1252/jcej.14we316.
  • Wu, Z.; Dreisinger, D. B.; Urch, H.; Fassbender, S. Fundamental Study of Lead Recovery from Cerussite Concentrate with Methanesulfonic Acid (MSA). Hydrometallurgy. 2014, 142, 23–35. DOI: 10.1016/j.hydromet.2013.10.018.
  • Ghasemi, S. M. S.; Azizi, A. Alkaline Leaching of Lead and Zinc by Sodium Hydroxide: Kinetics Modeling. J. Mater. Res. Technol. 2018, 7(2), 118–125. DOI: 10.1016/j.jmrt.2017.03.005.
  • Ebtehaj, I.; Bonakdari, H. Bed Load Sediment Transport Estimation in a Clean Pipe Using Multilayer Perceptron with Different Training Algorithms. KSCE J. Civil Eng. 2016, 20(2), 581–589. DOI: 10.1007/s12205-015-0630-7.
  • Gholami, A.; Bonakdari, H.; Zeynoddin, M.; Ebtehaj, I.; Gharabaghi, B.; Khodashenas, S. R. Reliable Method of Determining Stable Threshold Channel Shape Using Experimental and Gene Expression Programming Techniques. Neural Comput. Appl. 2019, 31(10), 5799–5817. DOI: 10.1007/s00521-018-3411-7.
  • Azimi, H.; Bonakdari, H.; Ebtehaj, I. Gene Expression Programming-based Approach for Predicting the Roller Length of a Hydraulic Jump on a Rough Bed. ISH J. Hydraul. Eng. 2019, 1–11. DOI: 10.1080/09715010.2019.1579058.
  • Azimi, H.; Bonakdari, H.; Ebtehaj, I. A Highly Efficient Gene Expression Programming Model for Predicting the Discharge Coefficient in A Side Weir along A Trapezoidal Canal. Irrig. Drain. 2017, 66(4), 655–666. DOI: 10.1002/ird.v66.4.
  • Chakraborty, A.; Roy, S.; Banerjee, R. Performance Emission Characterization of A LPG-Diesel Dual Fuel Operation: A Gene Expression Programming Approach. In Harmony Search and Nature Inspired Optimization Algorithms; Springer, 2019; pp 405–414.
  • Ebtehaj, I.; Bonakdari, H.; Zaji, A. H.; Azimi, H.; Sharifi, A. Gene Expression Programming to Predict the Discharge Coefficient in Rectangular Side Weirs. Appl. Soft Comput. 2015, 35, 618–628. DOI: 10.1016/j.asoc.2015.07.003.
  • Khozani, Z. S.; Bonakdari, H.; Ebtehaj, I. An Analysis of Shear Stress Distribution in Circular Channels with Sediment Deposition Based on Gene Expression Programming. Int. J. Sediment Res. 2017, 32(4), 575–584. DOI: 10.1016/j.ijsrc.2017.04.004.
  • Roy, S.; Ghosh, A.; Das, A. K.; Banerjee, R. Development and Validation of a GEP Model to Predict the Performance and Exhaust Emission Parameters of a CRDI Assisted Single Cylinder Diesel Engine Coupled with EGR. Appl. Energy. 2015, 140, 52–64. DOI: 10.1016/j.apenergy.2014.11.065.
  • Khozani, Z. S.; Bonakdari, H.; Ebtehaj, I. An Expert System for Predicting Shear Stress Distribution in Circular Open Channels Using Gene Expression Programming. Water Sci. Eng. 2018, 11(2), 167–176. DOI: 10.1016/j.wse.2018.07.001.
  • Roy, S.; Ghosh, A.; Das, A. K.; Banerjee, R. A Comparative Study of GEP and an ANN Strategy to Model Engine Performance and Emission Characteristics of A CRDI Assisted Single Cylinder Diesel Engine under CNG Dual-fuel Operation. J. Nat. Gas Sci. Eng. 2014, 21, 814–828. DOI: 10.1016/j.jngse.2014.10.024.
  • Roy, S.; Banerjee, R. Multi-objective Optimization of the Performance-emission Trade-off Characteristics of A CRDI Coupled CNG Diesel Dual-fuel Operation: A GEP Meta-model Assisted MOGA Endeavour. Fuel. 2018, 211, 891–897. DOI: 10.1016/j.fuel.2017.10.003.
  • Hoseinian, F. S.; Rezai, B.; Kowsari, E.; Safari, M. Effect of Impeller Speed on the Ni (II) Ion Flotation. Geosyst. Eng. 2019, 22(3), 161–168. DOI: 10.1080/12269328.2018.1520651.
  • Azamathulla, H. M.; Ahmad, Z. Gene-expression Programming for Transverse Mixing Coefficient. J. Hydrol. 2012, 434, 142–148. DOI: 10.1016/j.jhydrol.2012.02.018.
  • Zakaria, N. A.; Azamathulla, H. M.; Chang, C. K.; Ghani, A. A. Gene Expression Programming for Total Bed Material Load Estimation—A Case Study. Sci. Total Environ. 2010, 408(21), 5078–5085. DOI: 10.1016/j.scitotenv.2010.07.048.
  • Hashmi, M. Z.; Shamseldin, A. Y.; Melville, B. W. Statistical Downscaling of Watershed Precipitation Using Gene Expression Programming (GEP). Environ. Modell. Software. 2011, 26(12), 1639–1646. DOI: 10.1016/j.envsoft.2011.07.007.
  • Azamathulla, H. M. Gene Expression Programming for Prediction of Scour Depth Downstream of Sills. J. Hydrol. 2012, 460, 156–159. DOI: 10.1016/j.jhydrol.2012.06.034.
  • Hoseinian, F. S.; Faradonbeh, R. S.; Abdollahzadeh, A.; Rezai, B.; Soltani-Mohammadi, S. Semi-autogenous Mill Power Model Development Using Gene Expression Programming. Powder Technol. 2017, 308, 61–69. DOI: 10.1016/j.powtec.2016.11.045.
  • Armaghani, D. J.; Faradonbeh, R. S.; Rezaei, H.; Rashid, A. S. A.; Amnieh, H. B. Settlement Prediction of the Rock-socketed Piles through a New Technique Based on Gene Expression Programming. Neural Comput. Appl. 2016, 29(11), 1115–1125.
  • Faradonbeh, R. S.; Armaghani, D. J.; Monjezi, M. Development of a New Model for Predicting Flyrock Distance in Quarry Blasting: A Genetic Programming Technique. Bull. Eng. Geol. Environ. 2016, 75(3), 993–1006. DOI: 10.1007/s10064-016-0872-8.
  • Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence; Springer, 2006.
  • Ferreira, C. Gene Expression Programming in Problem Solving. Soft Computing and Industry; Springer, 2002; pp 635–653.
  • González-Domínguez, J.; Peters, E.; Dreisinger, D. The Refining of Lead by the Betts Process. J. Appl. Electrochem. 1991, 21(3), 189–202. DOI: 10.1007/BF01052570.
  • Liew, F. Pyrometallurgy versus Hydrometallurgy; TES-AMM: Singapore, 2008.
  • Hoseinian, F. S.; Rezai, B.; Kowsari, E. A New Kinetic Model for Ni (II) Ion Flotation Based on Gene Expression Programming. Sep. Sci. Technol. 2018, 54(15), 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.