203
Views
13
CrossRef citations to date
0
Altmetric
Adsorption

A two step optimization approach for maximizing biosorption of hexavalent chromium ions (Cr (VI)) using alginate immobilized Sargassum sp in a packed bed column

ORCID Icon, , , & ORCID Icon
Pages 90-106 | Received 31 May 2019, Accepted 25 Nov 2019, Published online: 20 Jan 2020

References

  • Mudhoo, A.; Garg, V. K.; Wang, S. Removal of Heavy Metals by Biosorption. Environ. Chem. Lett. 2011, 10, 109–117. DOI: 10.1007/s10311-011-0342-2.
  • Mustapha, M. U.; Halimoon, N. Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. J. Microb. Biochem. Technol. 2015, 07. DOI: 10.4172/1948-5948.
  • Abbas, M.; Adil, M.; Ehtisham-Ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G. A.; Asif Tahir, M.; Iqbal, M. Vibrio Fischeri Bioluminescence Inhibition Assay for Ecotoxicity Assessment: A Review. Sci. Total Environ. 2018, 626, 1295–1309. DOI: 10.1016/j.scitotenv.2018.01.066.
  • Dsilva, S. J.; Prabhu, A. A.; Suhas, B.; Rangaswamy, B.; Veeranki, V. D. Biosorption of Hexavalent Chromium by Free and Immobilized Dead Sargassum Sp: A Study on Isotherms and Kinetics. Desalination Water Treat. 2017, 62, 335–345. DOI: 10.5004/dwt.2017.0099.
  • Sag, Y.; Kutsal, T. Recent Trends in the Biosorption of Heavy Metals: A Review. Biotechnol. Bioprocess Eng. 2014, 6, 376. DOI: 10.1007/BF02932318.
  • Netzahuatl-Muñoz, A. R.; Cristiani-Urbina, M. D. C.; Cristiani-Urbina, E. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus Lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies. Plos One. 2015, 10, e0137086. DOI: 10.1371/journal.pone.0137086.
  • An, A.; Dhaneshwar, A. D.; Mrudula, C.; Kannan, N. Evaluation of Process Parameters for Biosorption of Chromium (VI) Using Full Factorial Design and Response Surface Methodology. Environ. Sci. Indian J. 2014, 9, 263–273.
  • Sahmoune, M. N.; Louhab, K.; Boukhiar, A. Advanced Biosorbents Materials for Removal of Chromium from Water and Wastewaters. Environ. Prog. Sustain. Energy. 2011, 30, 284–293. DOI: 10.1002/ep.10473.
  • Iqbal, M.;. Vicia Faba Bioassay for Environmental Toxicity Monitoring: A Review. Chemosphere. 2016, 144, 785–802. DOI: 10.1016/j.chemosphere.2015.09.048.
  • Iqbal, M.; Abbas, M.; Nisar, J.; Nazir, A.; Qamar, A. Bioassays Based on Higher Plants as Excellent Dosimeters for Ecotoxicity Monitoring: A Review; Social Science Research Network, Chemistry International. 2019, 5, 1–80.
  • Rangabhashiyam, S.; Suganya, E.; Selvaraju, N.; Varghese, L. A. Significance of Exploiting Non-living Biomaterials for the Biosorption of Wastewater Pollutants. World J. Microbiol. Biotechnol. 2014, 30, 1669–1689. DOI: 10.1007/s11274-014-1599-y.
  • Rangabhashiyam, S.; Selvaraju, N. Adsorptive Remediation of Hexavalent Chromium from Synthetic Wastewater by a Natural and ZnCl2 Activated Sterculia Guttata Shell. J. Mol. Liq. 2015, 207, 39–49. DOI: 10.1016/j.molliq.2015.03.018.
  • Alomá, I. D. L. C.; Rodríguez, I.; Calero, M.; Blázquez, G. Biosorption of Cr6+ from Aqueous Solution by Sugarcane Bagasse. Desalination Water Treat. 2014, 52, 5912–5922. DOI: 10.1080/19443994.2013.812521.
  • Aftab, K.; Akhtar, K.; Kausar, A.; Khaliq, S.; Nisar, N.; Umbreen, H.; Iqbal, M. Fungal Strains Isolation, Identification and Application for the Recovery of Zn(II) Ions. J. Photochem. Photobiol. B. 2017, 175, 282–290. DOI: 10.1016/j.jphotobiol.2017.08.028.
  • Husien, S.; Labena, A.; El-Belely, E. F.; Mahmoud Hamada, M.; Hamouda Asmaa, S. Adsorption Studies of Hexavalent Chromium [Cr (VI)] on Micro-scale Biomass of Sargassum Dentifolium, Seaweed. J. Environ. Chem. Eng. 2019, 7, 103444. DOI: 10.1016/j.jece.2019.103444.
  • Wang, Y.; Li, Y.; Zhao, F. J. Bisorption of chromium(VI) from Aqueous Solutions by Sargassum Thunbergii Kuntze. Biotechnol. Biotechnol. Equip. 2014, 28, 259–265. DOI: 10.1080/13102818.2014.907028.
  • Kleinübing, S. J.; Vieira, R. S.; Beppu, M. M.; Guibal, E.; da Silva, M. G. C. Characterization and Evaluation of Copper and Nickel Biosorption on Acidic Algae Sargassum Filipendula. Mater. Res. 2010, 13, 541–550. DOI: 10.1590/S1516-14392010000400018.
  • González Bermúdez, Y.; Rodríguez Rico, I. L.; Guibal, E.; Calero de Hoces, M.; Martín-Lara, M. Á. Biosorption of Hexavalent Chromium from Aqueous Solution by Sargassum Muticum Brown Alga. Application of Statistical Design for Process Optimization. Chem. Eng. J. 2012, 183, 68–76. DOI: 10.1016/j.cej.2011.12.022.
  • Rangabhashiyam, S.; Suganya, E.; Selvaraju, N. Packed Bed Column Investigation on Hexavalent Chromium Adsorption Using Activated Carbon Prepared from Swietenia Mahogani Fruit Shells. Desalination Water Treat. 2016, 57, 13048–13055. DOI: 10.1080/19443994.2015.1055519.
  • Prabhu, A. A.; Mandal, B.; Dasu, V. V. Medium Optimization for High Yield Production of Extracellular Human interferon-γ from Pichia Pastoris: A Statistical Optimization and Neural Network-based Approach. Korean J. Chem. Eng. 2017, 34, 1109–1121. DOI: 10.1007/s11814-016-0358-1.
  • Bhatti, I. A.; Ahmad, N.; Iqbal, N.; Zahid, M.; Iqbal, M. Chromium Adsorption Using Waste Tire and Conditions Optimization by Response Surface Methodology. J. Environ. Chem. Eng. 2017, 5, 2740–2751. DOI: 10.1016/j.jece.2017.04.051.
  • Venkata Mohan, S.; Chandrasekhara Rao, N.; Krishna Prasad, K.; Murali Krishna, P.; Sreenivas Rao, R.; Sarma, P. N. Anaerobic Treatment of Complex Chemical Wastewater in a Sequencing Batch Biofilm Reactor: Process Optimization and Evaluation of Factor Interactions Using the Taguchi Dynamic DOE Methodology. Biotechnol. Bioeng. 2005, 90, 732–745. DOI: 10.1002/(ISSN)1097-0290.
  • Allende, D.; Pando, D.; Matos, M.; Carleos, C. E.; Pazos, C.; Benito, J. M. Optimization of a Membrane Hybrid Process for Oil-in-water Emulsions Treatment Using Taguchi Experimental Design. Desalination Water Treat. 2016, 57, 4832–4841. DOI: 10.1080/19443994.2014.1002433.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Prabhu, A. A.; Jayadeep, A. Optimization of Enzyme Assisted Improvement of Polyphenols and Free Radical Scavenging Activity in Red Rice Bran: A Statistical and Neural Network Based Approach. Prep. Biochem. Biotechnol. 2016, 47, 397–405. DOI: 10.1080/10826068.2016.1252926.
  • Yasin, Y.; Ahmad, F. B. H.; Ghaffari-Moghaddam, M.; Khajeh, M. Application of a Hybrid Artificial Neural Network–Genetic Algorithm Approach to Optimize the Lead Ions Removal from Aqueous Solutions Using Intercalated tartrate-Mg–Al Layered Double Hydroxides. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 2–7.
  • Sivapathasekaran, C.; Mukherjee, S.; Ray, A.; Gupta, A.; Sen, R. Artificial Neural Network Modeling and Genetic Algorithm Based Medium Optimization for the Improved Production of Marine Biosurfactant. Bioresour. Technol. 2010, 101, 2884–2887. DOI: 10.1016/j.biortech.2009.09.093.
  • Trosset, M. W.;. What Is Simulated Annealing? Optim. Eng. 2001, 2, 201–213. DOI: 10.1023/A:1013193211174.
  • Brooks, S. P.; Morgan, B. J. T. Optimization Using Simulated Annealing. J. R. Stat. Soc. SeR. Stat. 1995, 44, 241–257.
  • Thomas, H. C.;. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. DOI: 10.1021/ja01238a017.
  • YOON, Y. H.; NELSON, J. H. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. DOI: 10.1080/15298668491400197.
  • Bohart, G. S.; Adams, E. Q. Some Aspects of the Behavior of Charcoal with respect to CHLORINE.1. J. Am. Chem. Soc. 1920, 42, 523–544.
  • Pilli, S. R.; Goud, V. V.; Mohanty, K. Biosorption of Cr(VI) on Immobilized Hydrilla Verticillata in a Continuous Up-flow Packed Bed: Prediction of Kinetic Parameters and Breakthrough Curves. Desalination Water Treat. 2012, 50, 115–124. DOI: 10.1080/19443994.2012.708555.
  • Prabhu, A. A.; Chityala, S.; Garg, Y.; Dasu, V. V. Reverse Micellar Extraction of Papain with Cationic Detergent Based System: An Optimization Approach. Prep. Biochem. Biotechnol. 2017, 47, 236–244. DOI: 10.1080/10826068.2016.1201685.
  • Prabhu, A. A.; Purkayastha, A.; Mandal, B.; Kumar, J. P.; Mandal, B. B.; Veeranki, V. D. A Novel Reverse Micellar Purification Strategy for Histidine Tagged Human Interferon Gamma (hIFN-γ) Protein from Pichia Pastoris. Int. J. Biol. Macromol. 2017, 107, 2512–2524. DOI: 10.1016/j.ijbiomac.2017.10.130.
  • Unni, S.; Prabhu, A. A.; Pandey, R.; Hande, R.; Veeranki, V. D. Artificial Neural Network-genetic Algorithm (ANN-GA) Based Medium Optimization for the Production of Human Interferon Gamma (hIFN-γ) in Kluyveromyces Lactis Cell Factory. Can. J. Chem. Eng. 2019, 97, 843–858.
  • Agarwal, B.; Balomajumder, C.; Thakur, P. K. Simultaneous Co-adsorptive Removal of Phenol and Cyanide from Binary Solution Using Granular Activated Carbon. Chem. Eng. J. 2013, 228, 655–664. DOI: 10.1016/j.cej.2013.05.030.
  • Sushma, C.; Anand, A. P.; Veeranki, V. D. Enhanced Production of Glutaminase Free L-asparaginase II by Bacillus Subtilis WB800N through Media Optimization. Korean J. Chem. Eng. 2017, 34, 2901–2915. DOI: 10.1007/s11814-017-0211-1.
  • Jayachandran, D.; Chityala, S.; Prabhu, A. A.; Dasu, V. V. Cationic Reverse Micellar Based Purification of Recombinant Glutaminase Free L-asparaginase II of Bacillus Subtilis WB800N from Fermentation Media. Protein Expr. Purif. 2019, 157, 1–8. DOI: 10.1016/j.pep.2019.01.002.
  • Hegde, K.; Veeranki, V. D. Production Optimization and Characterization of Recombinant Cutinases from Thermobifida Fusca Sp. NRRL B-8184. Appl. Biochem. Biotechnol. 2013, 170, 654–675. DOI: 10.1007/s12010-013-0219-x.
  • Quintelas, C.; Fernandes, B.; Castro, J.; Figueiredo, H.; Tavares, T. Biosorption of Cr(VI) by a Bacillus Coagulans Biofilm Supported on Granular Activated Carbon (GAC). Chem. Eng. J. 2008, 136, 195–203. DOI: 10.1016/j.cej.2007.03.082.
  • Samuel, J.; Pulimi, M.; Paul, M. L.; Maurya, A.; Chandrasekaran, N.; Mukherjee, A. Batch and Continuous Flow Studies of Adsorptive Removal of Cr(VI) by Adapted Bacterial Consortia Immobilized in Alginate Beads. Bioresour. Technol. 2013, 128, 423–430. DOI: 10.1016/j.biortech.2012.10.116.
  • Kumar, P. S.; Ramalingam, S.; Abhinaya, R. V.; Kirupha, S. D.; Murugesan, A.; Sivanesan, S. Adsorption of Metal Ions onto the Chemically Modified Agricultural Waste. CLEAN – Soil. Air Water. 2012, 40, 188–197. DOI: 10.1002/clen.v40.2.
  • Prabhu, A. A.; Gadela, R.; Bharali, B.; Deshavath, N. N.; Dasu, V. V. Development of High Biomass and Lipid Yielding Medium for Newly Isolated Rhodotorula Mucilaginosa. Fuel. 2019, 239, 874–885. DOI: 10.1016/j.fuel.2018.11.088.
  • Katla, S.; Karmakar, B.; Tadi, S. R. R.; Mohan, N.; Anand, B.; Pal, U.; Sivaprakasam, S. High Level Extracellular Production of Recombinant Human Interferon Alpha 2b in Glycoengineered Pichia Pastoris: Culture Medium Optimization, High Cell Density Cultivation and Biological Characterization. J. Appl. Microbiol. 2019, 126, 1438–1453. DOI: 10.1111/jam.2019.126.issue-5.
  • Akram, M.; Bhatti, H. N.; Iqbal, M.; Noreen, S.; Sadaf, S. Biocomposite Efficiency for Cr(VI) Adsorption: Kinetic, Equilibrium and Thermodynamics Studies. J. Environ. Chem. Eng. 2017, 5, 400–411. DOI: 10.1016/j.jece.2016.12.002.
  • Gupta, A.; Balomajumder, C. Simultaneous Continuous Removal of Cr(VI) and Phenol from Binary Synthetic Simulated Waste Water in Tea Waste Packed Bed Column: Kinetic Modeling. J Dispers. Sci. Technol. 2016, 37, 656–664. DOI: 10.1080/01932691.2015.1054507.
  • Sharma, D. C.; Forster, C. F. Continuous Adsorption and Desorption of Chromium Ions by Sphagnum Moss Peat. Process Biochem. 1995, 30, 293–298. DOI: 10.1016/0032-9592(95)87036-9.
  • Bai, R. S.; Abraham, T. E. Studies on Enhancement of Cr(VI) Biosorption by Chemically Modified Biomass of Rhizopus Nigricans. Water Res. 2002, 36, 1224–1236. DOI: 10.1016/S0043-1354(01)00330-X.
  • Vieira, M. G. A.; Oisiovici, R. M.; Gimenes, M. L.; Silva, M. G. C. Biosorption of chromium(VI) Using a Sargassum Sp. Packed-bed Column. Bioresour. Technol. 2008, 99, 3094–3099. DOI: 10.1016/j.biortech.2007.05.071.
  • Davis, T. A.; Llanes, F.; Volesky, B.; Mucci, A. Metal Selectivity of Sargassum Spp. And Their Alginates in Relation to Their α-l-Guluronic Acid Content and Conformation. Environ. Sci. Technol. 2003, 37, 261–267. DOI: 10.1021/es025781d.
  • Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M. A.; Nasir, S. Comparative Study of Natural and Modified Biomass of Sargassum Sp. For Removal of Cd2+ and Zn2+ from Wastewater. Appl. Water Sci. 2017, 7, 3469–3481. DOI: 10.1007/s13201-017-0624-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.