292
Views
48
CrossRef citations to date
0
Altmetric
Adsorption

Adsorptive performance of aminoterephthalic acid modified oxidized activated carbon for malachite green dye: mechanism, kinetic and thermodynamic studies

, ORCID Icon, , ORCID Icon, &
Pages 835-846 | Received 19 Dec 2019, Accepted 24 Feb 2020, Published online: 10 Mar 2020

References

  • Pathania, D.; Katwal, R.; Sharma, G.; Naushad, M.; Khan, M. R.; Al-Muhtaseb, A. H. Novel Guar gum/Al2O3 Nanocomposite as an Effective Photocatalyst for the Degradation of Malachite Green Dye. Int. J. Biol. Macromol. 2016, 87, 366–374. DOI: 10.1016/j.ijbiomac.2016.02.073.
  • Sharma, G.; ALOthman, Z. A.; Kumar, A.; Sharma, S.; Ponnusamy, S. K.; Naushad, M. Fabrication and Characterization of a Nanocomposite Hydrogel for Combined Photocatalytic Degradation of a Mixture of Malachite Green and Fast Green Dye. Nanotechnol. Environ. Eng. 2017, 2(1), 4. DOI: 10.1007/s41204-017-0014-y.
  • Sharma, G.; Naushad, M.; Pathania, D.; Kumar, A. A Multifunctional Nanocomposite Pectin thorium(IV) Tungstomolybdate for Heavy Metal Separation and Photoremediation of Malachite Green. Desalin. Water Treat. 2016, 57(41), 19443–19455. DOI: 10.1080/19443994.2015.1096834.
  • Bhagavathi Pushpa, T.; Vijayaraghavan, J.; Sardhar Basha, S. J.; Sekaran, V.; Vijayaraghavan, K.; Jegan, J. Investigation on Removal of Malachite Green Using EM Based Compost as Adsorbent. Ecotoxicol. Environ. Saf. 2015, 118, 177–182. DOI: 10.1016/j.ecoenv.2015.04.033.
  • Bouaziz, F.; Koubaa, M.; Kallel, F.; Ghorbel, R. E.; Chaabouni, S. E. Adsorptive Removal of Malachite Green from Aqueous Solutions by Almond Gum: Kinetic Study and Equilibrium Isotherms. Int. J. Biol. Macromol. 2017, 105, 56–65. DOI: 10.1016/j.ijbiomac.2017.06.106.
  • Torbati, S. Artificial Neural Network Modeling of Biotreatment of Malachite Green by Spirodela Polyrhiza: Study of Plant Physiological Responses and the Dye Biodegradation Pathway. Process Saf. Environ. Prot. 2016, 99, 11–19. DOI: 10.1016/j.psep.2015.10.004.
  • Hidayah, A. P. N.; Faridah, S.; Azura, M. S. N.; Gayah, A. R.; Othman, M.; Fatimah, A. B. Malachite Green and Leuco-Malachite Green Detection in Fish Using Modified Enzyme Biosensor. Procedia Chem. 2016, 20, 85–89. DOI: 10.1016/j.proche.2016.07.014.
  • Dadfarnia, S.; Haji Shabani, A. M.; Shiralian Esfahani, G.; Kazemi, E. Dispersive Liquid–liquid Microextraction Based on Solidification of Floating Organic Drop for Separation and Preconcentration of Malachite Green before Its Determination by Flow Injection Spectrophotometry. Spectrosc. Lett. 2016, 49(2), 140–145. DOI: 10.1080/00387010.2015.1104359.
  • Deniz, F.; Kepekci, R. A. Bioremoval of Malachite Green from Water Sample by Forestry Waste Mixture as Potential Biosorbent. Microchem. J. 2017, 132, 172–178. DOI: 10.1016/j.microc.2017.01.015.
  • Ling, Y. Y.; Mohd Suah, F. B. Extraction of Malachite Green from Wastewater by Using Polymer Inclusion Membrane. J. Environ. Chem. Eng. 2017, 5(1), 785–794. DOI: 10.1016/j.jece.2017.01.001.
  • Kumar, B. B.; Kumar, U. Removal of Malachite Green and Crystal Violet Dyes from Aqueous Solution with Bio-Materials: A Review. Global Journal of Researches in Engineering: e Civil And Structural Engineering. 2014, 14, 1–11.
  • Aldawsari, A.; Khan, M. A.; Hameed, B. H.; Alqadami, A. A.; Siddiqui, M. R.; Alothman, Z. A.; Ahmed, A. Y. B. H. Mercerized Mesoporous Date Pit Activated Carbon - A Novel Adsorbent to Sequester Potentially Toxic Divalent Heavy Metals from Water. PLoS One. 2017, 12(9). DOI: 10.1371/journal.pone.0184493.
  • Alqadami, A. A.; Naushad, M.; Abdalla, M. A.; Khan, M. R.; Alothman, Z. A. Adsorptive Removal of Toxic Dye Using Fe 3 O 4 − TSC Nanocomposite: Equilibrium, Kinetic, and Thermodynamic Studies. J. Chem. Eng. Data. 2016, 61(11), 3806–3813. DOI: 10.1021/acs.jced.6b00446.
  • Alqadami, A. A.; Naushad, M.; Alothman, Z. A.; Ghfar, A. A. Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Appl. Mater. Interfaces. 2017, 9(41), 36026–36037. DOI: 10.1021/acsami.7b10768.
  • Moradi, M.; Pirsaheb, M.; Sharafi, K. Environment : Isotherms and Kinetics of the Reaction, Jan, 2014.
  • Pirsaheb, M.; Mohammadi, H.; Sharafi, K.; Asadi, A. Fluoride and Nitrate Adsorption from Water by Fe(III)-doped Scoria: Optimizing Using Response Surface Modeling, Kinetic and Equilibrium Study. Water Supply. 2017, 18(3), 1117–1132. DOI: 10.2166/ws.2017.185.
  • Alqadami, A.; Naushad, M.; Abdalla, M. A.; ahamad, T.; ALOthman, Z. A.; Alshehri, S. M. Synthesis and Characterization of Fe3O4@TSC Nanocomposite: Highly Efficient Removal of Toxic Metal Ions from Aqueous Medium. RSC Adv. 2016, 6, 22679–22689. DOI: 10.1039/C5RA27525C.
  • Masoud, M.; Mohammad, S.; Meghan, P.; Kiomars, S.; Sepideh, S. The Efficiency Study of Pumice Powder to Lead Removal from the Aquatic Environment: Isotherms and Kinetics of the Reaction. J. Maz. Univ. Med. Sci. 2013, 23(1), 65–75.
  • Masoud, M.; Aliakbar, D.; Roshanak, R. K.; Ahmad, A.; Mahdi, F. Application of Modified Bentonite Using Sulfuric Acid for the Removal of Hexavalent Chromium from Aqueous Solutions. Environ. Heal. Eng. Manag. J. 2015, 2(3), 99–106.
  • Alqadami, A. A.; Khan, M. A.; Otero, M.; Siddiqui, M. R.; Jeon, B.-H.; Batoo, K. M. A Magnetic Nanocomposite Produced from Camel Bones for an Efficient Adsorption of Toxic Metals from Water. J. Cleaner Prod. 2018, 178, 293–304. DOI: 10.1016/j.jclepro.2018.01.023.
  • Heydari, M.; Karimyan, K.; Darvishmotevalli, M.; Karami, A.; Vasseghian, Y.; Azizi, N.; Ghayebzadeh, M.; Moradi, M. Data for Efficiency Comparison of Raw Pumice and Manganese-modified Pumice for Removal Phenol from Aqueous environments-Application of Response Surface Methodology. Data Br. 2018, 20, 1942–1954. DOI: 10.1016/j.dib.2018.09.027.
  • Farzi, S.; Farasati, M.; Bansouleh, B. F.; Pirsaheb, M. Evaluation of Batch and Continuous Adsorption Kinetic Models of Cadmium from Aqueous Solutions Using Sugarcane Straw Nano-structure Absorbent. Desalin. Water Treat. 2018, 115, 135–144. DOI: 10.5004/dwt.
  • Alqadami, A. A.; Khan, M. A.; Siddiqui, M. R.; Alothman, Z. A. Development of Citric Anhydride Anchored Mesoporous MOF through Post Synthesis Modification to Sequester Potentially Toxic Lead (II) from Water. Microporous Mesoporous Mater. 2018, 261, 198–206. DOI: 10.1016/j.micromeso.2017.11.016.
  • Tsvetkov, M.; Zaharieva, J.; Milanova, M. Ferrites, Modified with Silver Nanoparticles, for Photocatalytic Degradation of Malachite Green in Aqueous Solutions. Catal. Today. 2019 Available online 30 July. DOI: 10.1016/j.cattod.2019.07.052.
  • Abdelrahman, E. A. Synthesis of Zeolite Nanostructures from Waste Aluminum Cans for Efficient Removal of Malachite Green Dye from Aqueous Media. J. Mol. Liq. 2018, 253, 72–82. DOI: 10.1016/j.molliq.2018.01.038.
  • Qu, W.; Yuan, T.; Yin, G.; Xu, S.; Zhang, Q.; Su, H. Effect of Properties of Activated Carbon on Malachite Green Adsorption. Fuel. 2019, 249, 45–53. DOI: 10.1016/j.fuel.2019.03.058.
  • Pirsaheb, M.; Rezai, Z.; Mansouri, A. M.; Rastegar, A.; Alahabadi, A.; Sani, A. R.; Sharafi, K. Preparation of the Activated Carbon from India Shrub Wood and Their Application for Methylene Blue Removal: Modeling and Optimization. Desalin. Water Treat. 2016, 57(13), 5888–5902. DOI: 10.1080/19443994.2015.1008581.
  • Sharafi, K.; Mansouri, A. M.; Zinatizadeh, A. A.; Pirsaheb, M. Adsorptive Removal of Methylene Blue from Aqueous Solutions by Pumice Powder: Process Modelling and Kinetic Evaluation. Environ. Eng. Manage. J. 2015, 14(5), 1067–1078. DOI: 10.30638/eemj.2015.118.
  • Comparison, R.; Methylene, O. F.; Dye, B.; Pumice, B. Y.; Activated, P.; From, C.; Solutions, A. Removal Comparison of Methylene Blue Dye by Pumice Stone and Powder Activated Carbon from Aqueous Solutions. Int. J. Pharm. Technol. 2016, 8(1), 10958–10966.
  • Salamat, S.; Hadavifar, M.; Rezaei, H. Preparation of nanochitosan-STP from Shrimp Shell and Its Application in Removing of Malachite Green from Aqueous Solutions. J. Environ. Chem. Eng. 2019, 7(5), 103328. DOI: 10.1016/j.jece.2019.103328.
  • Ramezani, F.; Zare-Dorabei, R. Simultaneous Ultrasonic-assisted Removal of Malachite Green and Methylene Blue from Aqueous Solution by Zr-SBA-15. Polyhedron. 2019, 166, 153–161. DOI: 10.1016/j.poly.2019.03.033.
  • El-Zahhar, A. A.; Awwad, N. S. Removal of Malachite Green Dye from Aqueous Solutions Using Organically Modified Hydroxyapatite. J. Environ. Chem. Eng. 2016, 4(1), 633–638. DOI: 10.1016/j.jece.2015.12.014.
  • Murthy, T. K.; Gowrishankar, B. S.; Prabha, M. C.; Kruthi, M.; Krishna, R. H. Studies on Batch Adsorptive Removal of Malachite Green from Synthetic Wastewater Using Acid Treated Coffee Husk: Equilibrium, Kinetics and Thermodynamic Studies. Microchem. J. 2019, 146, 192–201. DOI: 10.1016/j.microc.2018.12.067.
  • Yin, X.; Meng, X.; Zhang, Y.; Zhang, W.; Sun, H.; Lessl, J. T.; Wang, N. Removal of V (V) and Pb (II) by Nanosized TiO2 and ZnO from Aqueous Solution. Ecotoxicol. Environ. Saf. 2018, 164, 510–519. DOI: 10.1016/j.ecoenv.2018.08.066.
  • Hao, Y.; Wang, Z.; Wang, Z.; He, Y. Preparation of Hierarchically Porous Carbon from Cellulose as Highly Efficient Adsorbent for the Removal of Organic Dyes from Aqueous Solutions. Ecotoxicol. Environ. Saf. 2019, 168, 298–303. DOI: 10.1016/j.ecoenv.2018.10.076.
  • Hosseinzadeh, S.; Hosseinzadeh, H.; Pashaei, S.; Khodaparast, Z. Synthesis of Magnetic Functionalized MWCNT Nanocomposite through Surface RAFT Co-polymerization of Acrylic Acid and N-isopropyl Acrylamide for Removal of Cationic Dyes from Aqueous Solutions. Ecotoxicol. Environ. Saf. 2018, 161, 34–44. DOI: 10.1016/j.ecoenv.2018.05.063.
  • Karami, A.; Karimyan, K.; Davoodi, R.; Karimaei, M.; Sharafie, K.; Rahimi, S.; Khosravi, T.; Miri, M.; Sharafi, H.; Azari, A. Application of Response Surface Methodology for Statistical Analysis, Modeling, and Optimization of Malachite Green Removal from Aqueous Solutions by Manganese-modified Pumice Adsorbent. Desalin. Water Treat. 2017, 89, 150–161. DOI: 10.5004/dwt.2017.
  • Chaudhary, S.; Sharma, J.; Kaith, B. S.; Yadav, S.; Sharma, A. K.; Goel, A. Gum Xanthan-psyllium-cl-poly(acrylic Acid-co-itaconic Acid) Based Adsorbent for Effective Removal of Cationic and Anionic Dyes: Adsorption Isotherms, Kinetics and Thermodynamic Studies. Ecotoxicol. Environ. Saf. 2018, 149, 150–158. DOI: 10.1016/j.ecoenv.2017.11.030.
  • Kostić, M.; Radović, M.; Velinov, N.; Najdanović, S.; Bojić, D.; Hurt, A.; Bojić, A. Synthesis of Mesoporous Triple-metal Nanosorbent from Layered Double Hydroxide as an Efficient New Sorbent for Removal of Dye from Water and Wastewater. Ecotoxicol. Environ. Saf. 2018, 159, 332–341. DOI: 10.1016/j.ecoenv.2018.05.015.
  • Shokry, H.; Elkady, M.; Hamad, H. Nano Activated Carbon from Industrial Mine Coal as Adsorbents for Removal of Dye from Simulated Textile Wastewater: Operational Parameters and Mechanism Study. J. Mater. Res. Technol. 2019, 8(5), 4477–4488. DOI: 10.1016/j.jmrt.2019.07.061.
  • Arias-Pardilla, J.; Salavagione, H. J.; Barbero, C.; Morallón, E.; Vázquez, J. L. Study of the Chemical Copolymerization of 2-aminoterephthalic Acid and Aniline.: Synthesis and Copolymer Properties. Eur. Polym. J. 2006, 42(7), 1521–1532. DOI: 10.1016/j.eurpolymj.2006.02.003.
  • Sharafi, K.; Pirsaheb, M.; Gupta, V. K.; Agarwal, S.; Moradi, M.; Vasseghian, Y.; Dragoi, E.-N. Phenol Adsorption on Scoria Stone as Adsorbent - Application of Response Surface Method and Artificial Neural Networks. J. Mol. Liq. 2019, 274, 699–714. DOI: 10.1016/j.molliq.2018.11.006.
  • Omidvar Borna, M.; Pirsaheb, M.; Vosoughi Niri, M.; Khosravi Mashizie, R.; Kakavandi, B.; Zare, M. R.; Asadi, A. Batch and Column Studies for the Adsorption of chromium(VI) on Low-cost Hibiscus Cannabinus Kenaf, a Green Adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 68, 80–89. DOI: 10.1016/j.jtice.2016.09.022.
  • Moradi, M.; Mansouri, A. M.; Azizi, N.; Amini, J.; Karimi, K.; Sharafi, K. Adsorptive Removal of Phenol from Aqueous Solutions by Copper (Cu)-modified Scoria Powder: Process Modeling and Kinetic Evaluation. Desalin. Water Treat. 2016, 57(25), 11820–11834. DOI: 10.1080/19443994.2015.1054311.
  • Moradi, M.; Heydari, M.; Darvishmotevalli, M.; Karimyan, K.; Gupta, V. K.; Vasseghian, Y.; Sharafi, H. Kinetic and Modeling Data on Phenol Removal by Iron-modified Scoria Powder (FSP) from Aqueous Solutions. Data Br. 2018, 20, 957–968. DOI: 10.1016/j.dib.2018.08.068.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40(9), 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H.M.F. Over the Adsorption in Solution. J Phys Chem. 1906, 57, 385–471
  • Lagergren, S. About the Theory of so Called Adsorption of Soluble Substances. K Sven. Veten. Hand. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70(2), 115–124. DOI: 10.1016/S0923-0467(98)00076-1.
  • Khan, M. A.; Alqadami, A. A.; Otero, M.; Siddiqui, M. R.; Alothman, Z. A.; Alsohaimi, I.; Rafatullah, M.; Hamedelniel, A. E. Heteroatom-doped Magnetic Hydrochar to Remove Post-transition and Transition Metals from Water: Synthesis, Characterization, and Adsorption Studies. Chemosphere. 2019, 218, 1089–1099. DOI: 10.1016/j.chemosphere.2018.11.210.
  • Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-amini, S.; Barar, J.; Davaran, S. Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (Ions). Bull. Korean Chem. Soc. 2012, 33(12), 3957–3962.
  • Njoku, V. O.; Foo, K. Y.; Asif, M.; Hameed, B. H. Preparation of Activated Carbons from Rambutan (Nephelium Lappaceum) Peel by Microwave-induced KOH Activation for Acid Yellow 17 Dye Adsorption. Chem. Eng. J. 2014, 250, 198–204. DOI: 10.1016/j.cej.2014.03.115.
  • Alhumaimess, M. S. Sulfhydryl Functionalized Activated Carbon for Pb(II) Ions Removal: Kinetics, Isotherms, and Mechanism. Sep. Sci. Technol. 2019, 55, 1–14.
  • Khan, M. A.; Otero, M.; Kazi, M.; Alqadami, A. A.; Wabaidur, S. M.; Siddiqui, M. R.; Alothman, Z. A.; Sumbul, S. Unary and Binary Adsorption Studies of Lead and Malachite Green onto a Nanomagnetic Copper Ferrite/drumstick Pod Biomass Composite. J. Hazard. Mater. 2019, 365, 759–770. DOI: 10.1016/j.jhazmat.2018.11.072.
  • Alqadami, A. A.; Naushad, M.; Alothman, Z. A.; Ahamad, T. Adsorptive Performance of MOF Nanocomposite for Methylene Blue and Malachite Green Dyes: Kinetics, Isotherm and Mechanism. J. Environ. Manage. 2018, 223, 29–36. DOI: 10.1016/j.jenvman.2018.05.090.
  • Alhumaimess, M. S.; Alsohaimi, I. H.; Alqadami, A. A.; Khan, M. A.; Kamel, M. M.; Aldosari, O.; Siddiqui, M. R.; Hamedelniel, A. E. Recyclable Glutaraldehyde Cross-linked Polymeric Tannin to Sequester Hexavalent Uranium from Aqueous Solution. J. Mol. Liq. 2019, 281, 29–38. DOI: 10.1016/j.molliq.2019.02.040.
  • Kenawy, E.-R.; Ghfar, A. A.; Wabaidur, S. M.; Khan, M. A.; Siddiqui, M. R.; Alothman, Z. A.; Alqadami, A. A.; Hamid, M. Cetyltrimethylammonium Bromide Intercalated and Branched Polyhydroxystyrene Functionalized Montmorillonite Clay to Sequester Cationic Dyes. J. Environ. Manage. 2018, 219, 285–293. DOI: 10.1016/j.jenvman.2018.04.121.
  • Hamdaoui, O.; Saoudi, F.; Chiha, M.; Naffrechoux, E. Sorption of Malachite Green by a Novel Sorbent, Dead Leaves of Plane Tree: Equilibrium and Kinetic Modeling. Chem. Eng. J. 2008, 143(1), 73–84. DOI: 10.1016/j.cej.2007.12.018.
  • Rangabhashiyam, S.; Balasubramanian, P. Performance of Novel Biosorbents Prepared Using Native and NaOH Treated Peltophorum Pterocarpum Fruit Shells for the Removal of Malachite Green. Bioresour. Technol. Rep. 2018, 3, 75–81. DOI: 10.1016/j.biteb.2018.06.004.
  • Naushad, M.; Alqadami, A. A.; AlOthman, Z. A.; Alsohaimi, I. H.; Algamdi, M. S.; Aldawsari, A. M. Adsorption Kinetics, Isotherm and Reusability Studies for the Removal of Cationic Dye from Aqueous Medium Using Arginine Modified Activated Carbon. J. Mol. Liq. 2019, 293, 111442. DOI: 10.1016/j.molliq.2019.111442.
  • Datta, D.; Kerkez Kuyumcu, Ö.; Bayazit, Ş. S.; Abdel Salam, M. Adsorptive Removal of Malachite Green and Rhodamine B Dyes on Fe3O4/activated Carbon Composite. J Dispers. Sci. Technol. 2017, 38(11), 1556–1562. DOI: 10.1080/01932691.2016.1262776.
  • Awadallah-F, A. Adsorptive Removal of Malachite Green Chloride and Reactive Red-198 from Aqueous Solutions by Using Multiwall Carbon Nanotubes-Graft-Poly (2-acrylamido-2-methyl-1-propanesulfonic Acid). J. Polym. Environ. 2017, 25(2), 258–276. DOI: 10.1007/s10924-016-0804-5.
  • Tang, H.; Zhou, W.; Zhang, L. Adsorption Isotherms and Kinetics Studies of Malachite Green on Chitin Hydrogels. J. Hazard. Mater. 2012, 218–225. DOI: 10.1016/j.jhazmat.2012.01.010.
  • Bhatti, H. N.; Jabeen, A.; Iqbal, M.; Noreen, S.; Naseem, Z. Adsorptive Behavior of Rice Bran-based Composites for Malachite Green Dye: Isotherm, Kinetic and Thermodynamic Studies. J. Mol. Liq. 2017, 237, 322–333. DOI: 10.1016/j.molliq.2017.04.033.
  • Tzvetkov, G.; Kaneva, N.; Spassov, T. Room-temperature Fabrication of Core-shell nano-ZnO/pollen Grain Biocomposite for Adsorptive Removal of Organic Dye from Water. Appl. Surf. Sci. 2017, 400, 481–491. DOI: 10.1016/j.apsusc.2016.12.225.
  • Tang, Y.; Zeng, Y.; Hu, T.; Zhou, Q.; Peng, Y. Preparation of Lignin Sulfonate-based Mesoporous Materials for Adsorbing Malachite Green from Aqueous Solution. J. Environ. Chem. Eng. 2016, 4(3), 2900–2910. DOI: 10.1016/j.jece.2016.05.040.
  • Fouda, A. S.; El Morsi, M. A.; El-Mogy, T. Investigation of the Inhibition of Carbon Steel Corrosion in Hydrochloric Acid Solutions by Domperidone Drug. J. Anal. Pharm. Res. 2017, 5(5), 1–8.
  • Naushad, M.; Ahamad, T.; Al-Maswari, B. M.; Abdullah Alqadami, A.; Alshehri, S. M. Nickel Ferrite Bearing Nitrogen-doped Mesoporous Carbon as Efficient Adsorbent for the Removal of Highly Toxic Metal Ion from Aqueous Medium. Chem. Eng. J. 2017, 330, 1351–1360. DOI: 10.1016/j.cej.2017.08.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.