370
Views
14
CrossRef citations to date
0
Altmetric
Membrane separations

Effect of low-frequency pulsatile crossflow microfiltration on flux and protein transmission in milk protein fractionation

ORCID Icon & ORCID Icon
Pages 1112-1127 | Received 13 Nov 2019, Accepted 25 Mar 2020, Published online: 09 Apr 2020

References

  • Hilal, N.; Ogunbiyi, O. O.; Miles, N. J.; Nigmatullin, R. Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review. Sep. Sci. Technol. 2005, 40(10), 1957–2005. DOI: 10.1081/SS-200068409.
  • Jaffrin, M. Y.;. Hydrodynamic Techniques to Enhance Membrane Filtration. Annu. Rev. Fluid Mech.. 2012, 44(1), 77–96. DOI: 10.1146/annurev-fluid-120710-101112.
  • Bertram, C. D.; Hoogland, M. R.; Li, H.; Odell, R. A.; Fane, A. G. Flux Enhancement in Crossflow Microfiltration Using a Collapsible-tube Pulsation Generator. J. Membr. Sci. 1993, 84(3), 279–292. DOI: 10.1016/0376-7388(93)80023-Q.
  • Gupta, B. B.; Blanpain, P.; Jaffrin, M. Y. Permeate Flux Enhancement by Pressure and Flow Pulsations in Microfiltration with Mineral Membranes. J. Membr. Sci. 1992, 70(2), 257–266. DOI: 10.1016/0376-7388(92)80111-V.
  • Howell, J. A.; Field, R. W.; Wu, D. Yeast Cell Microfiltration: Flux Enhancement in Baffled and Pulsatile Flow Systems. J. Membr. Sci. 1993, 80(1), 59–71. DOI: 10.1016/0376-7388(93)85132-G.
  • Hadzismajlovic, D. E.; Bertram, C. D. Flux Enhancement in Laminar Crossflow Microfiltration Using a Collapsible-tube Pulsation Generator. J. Membr. Sci. 1998, 142(2), 173–189. DOI: 10.1016/S0376-7388(97)00319-0.
  • Hadzismajlovic, D. E.; Bertram, C. D. Flux Enhancement in Turbulent Crossflow Microfiltration of Yeast Using a Collapsible-tube Pulsation Generator. J. Membr. Sci. 1999, 163(1), 123–134. DOI: 10.1016/S0376-7388(99)00161-1.
  • Maranges, C.; Fonade, C. Flux Enhancement in Crossflow Filtration Using an Unsteady Jet. J. Membr. Sci. 1997, 123(1), 1–8. DOI: 10.1016/S0376-7388(96)00175-5.
  • Shamel, M. M.; Sulaiman, N. M.; Sulaiman, M. Z. Cross Flow Ultrafiltration Studies on Solutions of Pectin with Pulsatile Flow Insitu Cleaning. Artif. Cells, Blood Substitues Biotechnol. 1999, 27(5–6), 447–453. DOI: 10.3109/10731199909117718.
  • Gupta, B. B.; Zaboubi, B.; Jaffrin, M. Y. Scaling up Pulsatile Filtration Flow Methods to a Pilot Apparatus Equipped with Mineral Membranes. J. Membr. Sci. 1993, 80(1), 13–20. DOI: 10.1016/0376-7388(93)85128-J.
  • Olayiwola, B.; Walzel, P. Effects of In-phase Oscillation of Retentate and Filtrate in Crossflow Filtration at Low Reynolds Number. J. Membr. Sci. 2009, 345(1–2), 36–46. DOI: 10.1016/j.memsci.2009.08.022.
  • Jaffrin, M. Y.; Ding, L. H.; Gupta, B. B. Rationale of Filtration Enhancement in Membrane Plasmapheresis by Pulsatile Blood Flow. Life Support Syst. 1987, 5(3), 267–271.
  • Jaffrin, M. Y.; Ding, L. H.; Laurent, M. J. Kinetics of Concentration-polarization Formation in Crossflow Filtration of Plasma from Blood: Experimental Results. J. Membr. Sci. 1992, 72(3), 267–275. DOI: 10.1016/0376-7388(92)85054-M.
  • Jaffrin, M. Y.; Gupta, B. B.; Paullier, P. Energy Saving Pulsatile Mode Cross Flow Filtration. J. Membr. Sci. 1994, 86(3), 281–290. DOI: 10.1016/0376-7388(93)E0151-9.
  • Kennedy, T. J.; Merson, R. L.; McCoy, B. J. Improving Permeation Flux by Pulsed Reverse Osmosis. Chem. Eng. Sci. 1974, 29(9), 1927–1931. DOI: 10.1016/0009-2509(74)85010-4.
  • Davis, R. H.; Leighton, D. T. Shear-induced Transport of a Particle Layer along a Porous Wall. Chem. Eng. Sci. 1987, 42(2), 275–281. DOI: 10.1016/0009-2509(87)85057-1.
  • Wu, D.; Howell, J. A.; Field, R. W. Pulsatile Flow Filtration of Yeast Cell Debris: Influence of Preincubation on Performance. Biotechnol. Bioeng. 1993, 41(10), 998–1002. DOI: 10.1002/bit.260411011.
  • Ilias, S.; Govind, R. Potential Applications of Pulsed Flow for Minimizing Concentration Polarization in Ultrafiltration. Sep. Sci. Technol. 1990, 25(13–15), 1307–1324. DOI: 10.1080/01496399008050393.
  • Curcio, S.; Calabrò, V.; Iorio, G. Monitoring and Control of TMP and Feed Flow Rate Pulsatile Operations during Ultrafiltration in a Membrane Module. Desalination. 2002, 145(1), 217–222. DOI: 10.1016/S0011-9164(02)00415-0.
  • Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of Membrane Technology in Dairy Industry: A Review. Asian-australas. J. Anim. Sci. 2013, 26(9), 1347–1358. DOI: 10.5713/ajas.2013.13082.
  • Brans, G.; Schroën, C. G. P. H.; van der Sman, R. G. M.; Boom, R. M. Membrane Fractionation of Milk: State of the Art and Challenges. J. Membr. Sci. 2004, 243(1–2), 263–272. DOI: 10.1016/j.memsci.2004.06.029.
  • Bouchoux, A.; Gésan-Guiziou, G.; Pérez, J.; Cabane, B. How to Squeeze a Sponge: Casein Micelles under Osmotic Stress, a SAXS Study. Biophys. J. 2010, 99(11), 3754–3762. DOI: 10.1016/j.bpj.2010.10.019.
  • Bouchoux, A.; Debbou, B.; Gésan-Guiziou, G.; Famelart, M.-H.; Doublier, J.-L.; Cabane, B. Rheology and Phase Behavior of Dense Casein Micelle Dispersions. J. Chem. Phys. 2009, 131(16), 165106. DOI: 10.1063/1.3245956.
  • Han, Q.; Li, W.; Trinh, T. A.; Fane, A. G.; Chew, J. W. Effect of the Surface Charge of Monodisperse Particulate Foulants on Cake Formation. J. Membr. Sci. 2018, 548, 108–116. DOI: 10.1016/j.memsci.2017.11.017.
  • Schork, N.; Schuhmann, S.; Arndt, F.; Schütz, S.; Guthausen, G.; Nirschl, H. MRI Investigations of Filtration: Fouling and Cleaning Processes. Microporous Mesoporous Mater. 2018, 269, 60–64. DOI: 10.1016/j.micromeso.2017.05.042.
  • Schuhmann, S.; Simkins, J. W.; Schork, N.; Codd, S. L.; Seymour, J. D.; Heijnen, M.; Saravia, F.; Horn, H.; Nirschl, H.; Guthausen, G. Characterization and Quantification of Structure and Flow in Multichannel Polymer Membranes by MRI. J. Membr. Sci. 2019, 570–571, 472–480. DOI: 10.1016/j.memsci.2018.10.072.
  • Çulfaz, P. Z.; Buetehorn, S.; Utiu, L.; Kueppers, M.; Bluemich, B.; Melin, T.; Wessling, M.; Lammertink, R. G. H. Fouling Behavior of Microstructured Hollow Fiber Membranes in Dead-End Filtrations: Critical Flux Determination and NMR Imaging of Particle Deposition. Langmuir. 2011, 27(5), 1643–1652. DOI: 10.1021/la1037734.
  • Jin, Y.; Hengl, N.; Baup, S.; Pignon, F.; Gondrexon, N.; Magnin, A.; Sztucki, M.; Narayanan, T.; Michot, L.; Cabane, B. Effects of Ultrasound on Colloidal Organization at Nanometer Length Scale during Cross-flow Ultrafiltration Probed by In-situ SAXS. J. Membr. Sci. 2014, 453, 624–635. DOI: 10.1016/j.memsci.2013.12.001.
  • Bijl, E.; van Valenberg, H. J. F.; Huppertz, T.; van Hooijdonk, A. C. M. Protein, Casein, and Micellar Salts in Milk: Current Content and Historical Perspectives. J. Dairy Sci. 2013, 96(9), 5455–5464. DOI: 10.3168/jds.2012-6497.
  • Walstra, P.;. On the Stability of Casein Micelles. J. Dairy Sci. 1990, 73(8), 1965–1979. DOI: 10.3168/jds.S0022-0302(90)78875-3.
  • Dumpler, J.; Wohlschläger, H.; Kulozik, U. Dissociation and Coagulation of Caseins and Whey Proteins in Concentrated Skim Milk Heated by Direct Steam Injection. Dairy Sci. Technol. 2017, 96(6), 807–826. DOI: 10.1007/s13594-016-0304-3.
  • Hartinger, M.; Heidebrecht, H.-J.; Schiffer, S.; Dumpler, J.; Kulozik, U. Milk Protein Fractionation by Means of Spiral-Wound Microfiltration Membranes: Effect of the Pressure Adjustment Mode and Temperature on Flux and Protein Permeation. Foods. 2019, 8(6), 180. DOI: 10.3390/foods8060180.
  • Arunkumar, A.; Etzel, M. R. Fractionation of α-lactalbumin from β-lactoglobulin Using Positively Charged Tangential Flow Ultrafiltration Membranes. Sep. Purif. Technol. 2013, 105, 121–128. DOI: 10.1016/j.seppur.2012.12.018.
  • Piry, A.; Kühnl, W.; Grein, T.; Tolkach, A.; Ripperger, S.; Kulozik, U. Length Dependency of Flux and Protein Permeation in Crossflow Microfiltration of Skimmed Milk. J. Membr. Sci. 2008, 325(2), 887–894. DOI: 10.1016/j.memsci.2008.09.025.
  • Le Berre, O.; Daufin, G. Skimmilk Crossflow Microfiltration Performance versus Permeation Flux to Wall Shear Stress Ratio. J. Membr. Sci. 1996, 117(1), 261–270. DOI: 10.1016/0376-7388(96)00076-2.
  • Bouchoux, A.; Qu, P.; Bacchin, P.; Gésan-Guiziou, G. A General Approach for Predicting the Filtration of Soft and Permeable Colloids: The Milk Example. Langmuir. 2014, 30(1), 22–34. DOI: 10.1021/la402865p.
  • Militello, V.; Navarra, G.; Foderá, V.; Librizzi, F.; Vetri, V.; Leone, M. Thermal Aggregation of Proteins in Presence of Metal Ions. In Biophysical Inquiry into Protein Aggregation and Amyloid Diseases; Biagio, P. L. S., Bulone, D., Eds. 181–232; Trivandrum, India: Transworld Research Network, 2008.
  • Hoffmann, M. A. M.; van Mil, P. J. J. M. Heat-Induced Aggregation of β-Lactoglobulin as a Function of pH. J. Agric. Food Chem. 1999, 47(5), 1898–1905. DOI: 10.1021/jf980886e.
  • Kontopidis, G.; Holt, C.; Sawyer, L. Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function. J. Dairy Sci. 2004, 87(4), 785–796. DOI: 10.3168/jds.S0022-0302(04)73222-1.
  • Bouhid de Aguiar, I.; Schroën, K.; Meireles, M.; Bouchoux, A. Compressive Resistance of Granular-scale Microgels: From Loose to Dense Packing. Colloids Surf. Physicochem. Eng. Aspects 2018, 553, 406–416. DOI: 10.1016/j.colsurfa.2018.05.064.
  • Piry, A.; Heino, A.; Kühnl, W.; Grein, T.; Ripperger, S.; Kulozik, U. Effect of Membrane Length, Membrane Resistance, and Filtration Conditions on the Fractionation of Milk Proteins by Microfiltration. J. Dairy Sci. 2012, 95(4), 1590–1602. DOI: 10.3168/jds.2011-4292.
  • Qu, P.; Gésan-Guiziou, G.; Bouchoux, A. Dead-end Filtration of Sponge-like Colloids: The Case of Casein Micelle. J. Membr. Sci. 2012, 417–418, 10–19. DOI: 10.1016/j.memsci.2012.06.003.
  • Gebhardt, R.; Steinhauer, T.; Meyer, P.; Sterr, J.; Perlich, J.; Kulozik, U. Structural Changes of Deposited Casein Micelles Induced by Membrane Filtration. Faraday Discuss. 2012, 158, 77–88. DOI: 10.1039/c2fd20022h.
  • Adams, M. C.; Barbano, D. M. Serum Protein Removal from Skim Milk with a 3-stage, 3× Ceramic Isoflux Membrane Process at 50°C1. J. Dairy Sci. 2013, 96(4), 2020–2034. DOI: 10.3168/jds.2012-6007.
  • Heidebrecht, H.-J.; Kulozik, U. Fractionation of Casein Micelles and Minor Proteins by Microfiltration in Diafiltration Mode. Study of the Transmission and Yield of the Immunoglobulins IgG, IgA and IgM. Int. Dairy J. 2019, 93, 1–10. DOI: 10.1016/j.idairyj.2019.01.009.
  • Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F. Cryo-transmission Electron Tomography of Native Casein Micelles from Bovine Milk. J. Dairy Sci. 2011, 94(12), 5770–5775. DOI: 10.3168/jds.2011-4368.
  • Kühnl, W.; Piry, A.; Kaufmann, V.; Grein, T.; Ripperger, S.; Kulozik, U. Impact of Colloidal Interactions on the Flux in Cross-flow Microfiltration of Milk at Different pH Values: A Surface Energy Approach. J. Membr. Sci. 2010, 352(1–2), 107–115. DOI: 10.1016/j.memsci.2010.02.006.
  • Steinhauer, T.; Kühnl, W.; Kulozik, U. Impact of Protein Interactions and Transmembrane Pressure on Physical Properties of Filter Cakes Formed during Filtrations of Skim Milk. Procedia Food Sci. 2011, 1, 886–892. DOI: 10.1016/j.profoo.2011.09.134.
  • Dombrowski, J.; Dechau, J.; Kulozik, U. Multiscale Approach to Characterize Bulk, Surface and Foaming Behavior of Casein Micelles as a Function of Alkalinisation. Food Hydrocolloids. 2016, 57, 92–102. DOI: 10.1016/j.foodhyd.2015.12.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.