225
Views
7
CrossRef citations to date
0
Altmetric
Extraction

Modeling and optimization of reactive extraction equilibria and kinetic study of gallic acid using tributyl phosphate in isoamyl alcohol

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1035-1046 | Received 14 Jan 2019, Accepted 30 Mar 2020, Published online: 20 Apr 2020

References

  • Badhani, B.; Sharma, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv. 2015, 5(35), 27540–27557. DOI: 10.1039/C5RA01911G.
  • Trevino-Cueto, B.; Luis, M.; Contreras-Esquivel, J., . C.; Rodriguez, R.; Aguilera, A.; Aguilar, C. N. Gallic Acid and Tannase Accumulation during Fungal Solid State Culture of a Tannin-rich Desert Plant (Larreatridentatacov.). Bioresour. Technol. 2007, 98(3), 721−724. DOI:10.1016/j.biortech.2006.02.015.
  • Seth, M.; Chand, S. Biosynthesis of Tannase and Hydrolysis of Tannins to Gallic Acid by Aspergillus Awamori — Optimisation of Process Parameters. Process Biochem. 2000, 36(1–2), 39−44. DOI: 10.1016/S0032-9592(00)00179-5.
  • Kar, B.; Banerjee, R.; Bhattacharyya, B. C. Microbial Production of Gallic Acid by Modified Solid State Fermentation. J. Ind. Microbiol. Biotechnol. 1999, 23(3), 173–177. DOI:10.1038/sj.jim.2900713.
  • Banerjee, D.; Mahapatra, S.; Pati, B. R. Gallic Acid Production by Submerged Fermentation of Aspergillus Aculeatus DBF9. Res. J.Microbiol.. 2007, 2(5), 462−468. DOI:10.3923/jm.2007.462.468.
  • Mukherjee, G.; Banerjee, R. Biosynthesis of Tannase and Gallic Acid from Tannin Rich Substrates by Rhizopus Oryzae and Aspergillus Foetidus. J. Basic Microbiol. 2004, 44(1), 42–48. DOI:10.1002/jobm.200310317.
  • Puoci, F.; Scoma, A.; Cirillo, G.; Bertin, L.; Fava, F.; Picci, N. Selective Extraction and Purification of Gallic Acid from Actual Site Olive Mill Wastewaters by Means of Molecularly Imprinted Microparticles. Chem. Eng. J. 2012, 198–199, 529–535. DOI: 10.1016/j.cej.2012.05.095.
  • Kumar, S.; Babu, B. V. Process Intensification for Separation of Carboxylic Acids from Fermentation Broths Using Reactive Extraction. J Future Eng Technol. 2008, 3, 19. DOI: 10.26634/jfet.3.3.643.
  • Jarvinen, M.; Myllykoski, L.; Keiski, R.; Sohlo, J. Separation of Lactic Acid from Fermented Broth by Reactive Extraction. Bioseparation. 2000, 9(3), 163–166. DOI: 10.1023/A:1008183322075.
  • Keshav, A.; Wasewar, K. L.; Chand, S. Equilibrium Studies for Extraction of Propionic Acid Using Tri-n-Butyl Phosphate in Different Solvents. J. Chem. Eng. Data. 2008, 53(7), 1424–1430. DOI: 10.1021/je7006617.
  • Pal, D.; Keshav, A. Extraction Equilibria of Pyruvic Acid Using Tri-n-butyl Phosphate: Influence of Diluents J. Chem.. Eng Data. 2014, 59(9), 2709–2716. DOI:10.1021/je500125j.
  • Nimmakayala, R.; Pal, D. Effect of Diluents on Extraction Equilibrium of trans-Aconitic Acid. J Chem Eng Data. 2019, 64(7), 2985–2996. DOI:10.1021/acs.jced.9b00059.
  • Keshav, A.; Wasewar, K. L.; Chand, S. Reactive Extraction of Propionic Acid Using Tri-n-butyl Phosphate in Petroleum Ether: Equilibrium Study. Chem Biochem Eng Q. 2008, 22(4), 433–437.
  • Kumari, A.; Gaur, A.; Uslu, H.; Kumar, S. Reactive Separation of P-nitro Phenol (PNP) from Aqueous Solution Using Tri-n-butyl Phosphate: Equilibrium and COSMO-RS Studies. Sep. Sci. Technol. 2019, 54(16), 2738–2748. DOI: 10.1080/01496395.2018.1552294.
  • Keshav, A.; Chand, S.; Wasewar, K. L. Reactive Extraction of Acrylic Acid Using Tri-n-butyl Phosphate in Different Diluents. J Chem.Eng. Data. 2009, 54(6), 1782–1786. DOI:10.1021/je800856e.
  • Uslu, H.; Datta, D.; Santos, D.; Bamufleh, H. S.; Bayat, C. Separation of 2, 4, 6-trinitrophenol from Aqueous Solution by Liquid–liquid Extraction Method: Equilibrium, Kinetics, Thermodynamics and Molecular Dynamic Simulation. Chem. Eng. J. 2016, 299, 342–352. DOI: 10.1016/j.cej.2016.04.080.
  • Joshi, N.; Keshav, A.; Poonia, A. K. Reactive Separation of Gallic Acid Using Tributyl Phosphate Dissolved in 2-octanone, Laurylalcohol and Heptane. Chem. Data Collect. 2020, 25, 100325. DOI: 10.1016/j.cdc.2019.100325.
  • Joshi, N.; Keshav, A.; Poonia, A. K. Reactive Extraction of Gallic Acid Using Tributyl Phosphate in Different Classes of Diluents. J Chem. Eng. Data. 2019, 64(6), 2826–2835. DOI:10.1021/acs.jced.9b00192.
  • Athankar, K. K.; Wasewar., K. L.; Varma, M. N.; Shende, D. Z. Reactive Extraction of Gallic Acid with Tri-n-caprylylamine. New J. Chem. 2016, 40(3), 2413–2417. DOI: 10.1039/C5NJ03007B.
  • Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Effect of Temperature on Reactive Extraction of Gallic Acid Using Tri-n-butyl Phosphate, Tri-n-octylamine and Aliquat 336. J. Chem. Eng. Data. 2016, 61(9), 3217–3224. DOI: 10.1021/acs.jced.6b00310.
  • Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Modeling and Optimization of Reactive Extraction of Gallic Acid Using RSM. Chem. Eng. Commun. 2017, 204(4), 522–528. DOI: 10.1080/00986445.2017.1282470.
  • Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Reactive Separation of Gallic Acid: Experimentation and Optimization Using Response Surface Methodology and Artificial Neural Network. Chem. Biochem. Eng.. 2017, 31(1), DOI:10.15255/CABEQ.2016.931
  • Pandey, S.; Kumar, S. Reactive Extraction of Gallic Acid Using Aminic and Phosphoric Extractants Dissolved in Different Diluents: Effect of Solvent’s Polarity and Column Design. Ind. Eng. Chem. Res. 2018, 57(8), 2976–2987. DOI: 10.1021/acs.iecr.7b05110.
  • Datta, D.; Kumar, S. Equilibrium and Kinetic Studies of the Reactive Extraction of Nicotinic Acid with Tri-n-octylamine Dissolved in MIBK. Ind. Eng. Chem. Res. 2013, 52(41), 4680–14686. DOI: 10.1021/ie401730v.
  • Datta, D.; Kumar, S. Reactive Extraction of Pyridine-2-carboxylic Acid (Picolinic Acid) Using Nontoxic Extractant and Diluent Systems. J. Chem. Eng. Data. 2014, 59(5), 1540–1548. DOI: 10.1021/je401110x.
  • Uslu, H.;. Linear Solvation Energy Relationship (LSER) Modeling and Kinetic Studies on Propionic Acid Reactive Extraction Using Alamine 336 in a Toluene Solution. Ind. Eng. Chem. Res. 2006, 45(16), 5788–5795. DOI: 10.1021/ie060453y.
  • Mondal, H.; Athankar, K. K.; Wasewar, K. L. Assessment of the Efficiency of Aliquat 336+Rice Bran Oil for Separation of Acrylic Acid from Aqueous Solution Using Reactive Extraction. Int. J. Chem. Reactor Eng. 2018, 6(9), DOI:10.1515/ijcre-2017-0214
  • Kertes, A. S.; King, C. J. Extraction Chemistry of Fermentation Product Carboxylic Acids. Biotechnol. Bioeng. 1986, 28(2), 269–282. DOI: 10.1002/bit.260280217.
  • Doraiswamy, L. K.; Sharma, M. M. Heterogeneous Reactions: Analysis, Examples, and Reactor Design; John Wiley & Sons Inc: New York, 1984.
  • Reddy, K. A.; Doraiswamy, L. K. Estimating Liquid Diffusivity. Ind. Eng. Chem. Fundam. 1967, 6(1), 77–79. DOI:10.1021/i160021a012.
  • Wilke, C. R.; Chang, P. Correlation of Diffusion Coefficient in Dilute Solutions. AIChE J. 1955, 1(2), 264–270. DOI: 10.1002/aic.690010222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.