215
Views
4
CrossRef citations to date
0
Altmetric
Extraction

Separation of Cd(II), Cu(II) and zinc sulfate from waste produced in zinc hydrometallurgy cementation

, & ORCID Icon
Pages 1360-1369 | Received 01 Apr 2020, Accepted 05 Jun 2020, Published online: 22 Jun 2020

References

  • Coelho, F. E. B.; Balarini, J. C.; Araújo, E. M. R.; Miranda, T. L. S.; Peres, A. E. C.; Martins, A. H.; Salum, A. Roasted Zinc Concentrate Leaching: Population Balance Modeling and Validation. Hydrometallurgy. 2018, 175, 208–217. DOI: 10.1016/j.hydromet.2017.11.013.
  • Zhang, F.; Yang, C.; Zhou, X.; Zhu, H. Fractional Order Fuzzy PID Optimal Control in Copper Removal Process of Zinc Hydrometallurgy. Hydrometallurgy. 2018, 178, 60–76. DOI: 10.1016/j.hydromet.2018.03.021.
  • Boyanov, B. S.; Konareva, V. V.; Kolev, N. K. Purification of Zinc Sulfate Solutions from Cobalt and Nickel through Activated Cementation. Hydrometallurgy. 2004, 73(1), 163–168. DOI: 10.1016/j.hydromet.2003.09.002.
  • Zhang, B.; Yang, C.; Zhu, H.; Li, Y.; Gui, W. Kinetic Modeling and Parameter Estimation for Competing Reactions in Copper Removal Process from Zinc Sulfate Solution. Ind. Eng. Chem. Res. 2013, 52(48), 17074–17086. DOI: 10.1021/ie401619h.
  • Gouvea, L. R.; Morais, C. A. Recovery of Zinc and Cadmium from Industrial Waste by Leaching/cementation. Miner. Eng. 2007, 20(9), 956–958. DOI: 10.1016/j.mineng.2007.04.016.
  • Han, J.; Yang, C.; Zhou, X.; Gui, W. Dynamic Multi-objective Optimization Arising in Iron Precipitation of Zinc Hydrometallurgy. Hydrometallurgy. 2017, 173, 134–148. DOI: 10.1016/j.hydromet.2017.08.007.
  • Ju, S.; Zhang, Y.; Zhang, Y.; Xue, P.; Wang, Y. Clean Hydrometallurgical Route to Recover Zinc, Silver, Lead, Copper, Cadmium and Iron from Hazardous Jarosite Residues Produced during Zinc Hydrometallurgy. J. Hazard. Mater. 2011, 192(2), 554–558. DOI: 10.1016/j.jhazmat.2011.05.049.
  • Wang, X. Q.; Xie, K. Q.; Ma, W. H.; Yang, M. Y.; Zeng, P.; Cao, Y. C. Recovery of Zinc and Other Valuable Metals from Zinc Leach Residue by Top Blowing Fuming Method. Miner. Process. Extr. Metall. 2013, 122(3), 174–178. DOI: 10.1179/1743285513Y.0000000045.
  • Leite, D. D. S.; Carvalho, P. L. G.; de Lemos, L. R.; Mageste, A. B.; Rodrigues, G. D. Hydrometallurgical Recovery of Zn(II) and Mn(II) from Alkaline Batteries Waste Employing Aqueous Two-phase System. Sep. Purif. Technol. 2019, 210, 327–334. DOI: 10.1016/j.seppur.2018.07.038.
  • de Souza, W. B.; Abreu, C. S.; Rodrigues, G. D.; Mageste, A. B.; de Lemos, L. R. Selective Separation of Cu, Ni and Ag from Printed Circuit Board Waste Using an Environmentally Safe Technique. J. Environ. Manage. 2018, 226, 76–82. DOI: 10.1016/j.jenvman.2018.08.049.
  • de Oliveira, W. C. M.; Rodrigues, G. D.; Mageste, A. B.; de Lemos, L. R. Green Selective Recovery of Lanthanum from Ni-MH Battery Leachate Using Aqueous Two-phase Systems. Chem. Eng. J. 2017, 322, 346–352. DOI: 10.1016/j.cej.2017.04.044.
  • de Lemos, L. R.; Campos, R. A.; Rodrigues, G. D.; da Silva, L. H. M.; da Silva, M. C. H. Green Separation of Copper and Zinc Using Triblock Copolymer Aqueous Two-phase Systems. Sep. Purif. Technol. 2013, 115, 107–113. DOI: 10.1016/j.seppur.2013.04.048.
  • de Lemos, L. R.; Santos, I. J. B.; Rodrigues, G. D.; da Silva, L. H. M.; da Silva, M. C. H. Copper Recovery from Ore by Liquid–liquid Extraction Using Aqueous Two-phase System. J. Hazard. Mater. 2012, 237-238, 209–214. DOI: 10.1016/j.jhazmat.2012.08.028.
  • Leite, D. D. S.; Carvalho, P. L. G.; de Lemos, L. R.; Mageste, A. B.; Rodrigues, G. D. Hydrometallurgical Separation of Copper and Cobalt from Lithium-ion Batteries Using Aqueous Two-phase Systems. Hydrometallurgy. 2017, 169, 245–252. DOI: 10.1016/j.hydromet.2017.01.002.
  • Santos, L. H.; Carvalho, P. L. G.; Rodrigues, G. D.; Mansur, M. B. Selective Removal of Calcium from Sulfate Solutions Containing Magnesium and Nickel Using Aqueous Two Phase Systems (ATPS). Hydrometallurgy. 2015, 156, 259–263. DOI: 10.1016/j.hydromet.2015.06.010.
  • Khayati, G.; Gilani, H. G.; Safari Keyvani, Z. Extraction of Cu(II) Ions from Aqueous Media Using PEG/Sulphate Salt Aqueous Two-phase System. Sep. Sci. Technol. 2016, 51(4), 601–608. DOI: 10.1080/01496395.2015.1119853.
  • Delgado, E. R.; Alves, L. A.; Verly, R. M.; De Lemos, L. R.; de Mesquita, J. P. Purification, Selection, and Partition Coefficient of Highly Oxidized Carbon Dots in Aqueous Two-Phase Systems Based on Polymer–Salt Pairs. Langmuir. 2017, 33(43), 12235–12243. DOI: 10.1021/acs.langmuir.7b02361.
  • Li, Y.; Wu, Y.; Chen, K.; Wu, B.; Ji, L.; Zhu, J. Partition Behavior of Spiramycin in an Aqueous Two-phase System Based on Polyethylene Glycol and Sulfates. Sep. Sci. Technol. 2018, 53(3), 496–502. DOI: 10.1080/01496395.2017.1396341.
  • Murari, G. F.; Penido, J. A.; Machado, P. A. L.; Lemos, L. R. D.; Lemes, N. H. T.; Virtuoso, L. S.; Rodrigues, G. D.; Mageste, A. B. Phase Diagrams of Aqueous Two-phase Systems Formed by Polyethylene Glycol + Ammonium Sulfate + Water: Equilibrium Data and Thermodynamic Modeling. Fluid Phase Equilib. 2015, 406, 61–69. DOI: 10.1016/j.fluid.2015.07.024.
  • Zhang, Y.; Cremer, P. S. Interactions between Macromolecules and Ions: The Hofmeister Series. Curr. Opin. Chem. Biol. 2006, 10(6), 658–663. DOI: 10.1016/j.cbpa.2006.09.020.
  • da Silva Gonçalves, L. F.; Mendes Felizberto, N. C.; da Cruz Silva, K.; Mageste, A. B.; Rodrigues, G. D.; de Lemos, L. R. Equilibrium Phase Behavior of Aqueous Two-phase System Formed by Triblock Copolymer + Sulfate Salt + Water at Different Temperatures. Fluid Phase Equilib. 2018, 478, 145–152. DOI: 10.1016/j.fluid.2018.09.016.
  • Glyk, A.; Scheper, T.; Beutel, S. Influence of Different Phase-Forming Parameters on the Phase Diagram of Several PEG–Salt Aqueous Two-Phase Systems. J. Chem. Eng. Data. 2014, 59(3), 850–859. DOI: 10.1021/je401002w.
  • Rengifo, A. F. C.; Ferreira, G. M. D.; Ferreira, G. M. D.; Hespanhol da Silva, M. C.; Mendes da Silva, L. H. Phase Diagrams, Densities and Refractive Indexes of Poly(ethylene Oxide)+organic Salts+water Aqueous Two-phase Systems: Effect of Temperature, Anion and Molar Mass. Fluid Phase Equilib. 2015, 406, 70–76. DOI: 10.1016/j.fluid.2015.08.002.
  • de Lemos, L. R.; Patricio, P. D. R.; Rodrigues, G. D.; Maduro de Carvalho, R. M.; Hespanhol da Silva, M. C.; Mendes da Silva, L. H. Liquid-liquid Equilibrium of Aqueous Two-phase Systems Composed of Poly(ethylene Oxide) 1500 and Different Electrolytes ((NH4)(2)SO4, ZnSO4 and K2HPO4): Experimental and Correlation. Fluid Phase Equilib. 2011, 305(1), 19–24. DOI: 10.1016/j.fluid.2011.03.001.
  • Mutalib, F. A. A.; Jahim, J. M.; Bakar, F. D. A.; Mohammad, A. W.; Hassan, O. Characterisation of New Aqueous Two-phase Systems Comprising of Dehypon®LS54 and K4484®Dextrin for Potential Cutinase Recovery. Sep. Purif. Technol. 2014, 123, 183–189. DOI: 10.1016/j.seppur.2013.12.037.
  • Lacerda, V. G.; Mageste, A. B.; Santos, I. J. B.; da Silva, L. H. M.; da Silva, M. D. C. H. Separation of Cd and Ni from Ni–Cd Batteries by an Environmentally Safe Methodology Employing Aqueous Two-phase Systems. J. Power Sources. 2009, 193(2), 908–913. DOI: 10.1016/j.jpowsour.2009.05.004.
  • Bulgariu, L.; Bulgariu, D.; Sârghie, I.; Măluṭan, T. Cd(II) Extraction in PEG-based Two-phase Aqueous Systems in the Presence of Iodide Ions. Analysis of PEG-rich Solid Phases. Open Chem. 2007, 5, 291. DOI: 10.2478/s11532-006-0048-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.