146
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Development of a kinetical investigation method using adsorption kinetic models for selection and optimization of flocculation process

, &
Pages 1830-1841 | Received 07 Jun 2020, Accepted 17 Jul 2020, Published online: 30 Jul 2020

References

  • Pearse, M. J.; Weir, S.; Adkins, S. J.; Moody, G. M. Advances in Mineral Flocculation. Miner. Eng. 2001, 14(11), 1505–1511. DOI: 10.1016/S0892-6875(01)00163-7.
  • Pearse, M. Historical Use and Future Development of Chemicals for Solid–liquid Separation in the Mineral Processing Industry. Miner. Eng. 2003, 16(2), 103–108. DOI: 10.1016/S0892-6875(02)00288-1.
  • Chen, D.; van de Ven, T. G. M. Flocculation Kinetics of Precipitated Calcium Carbonate (PCC) with Sterically Stabilized Nanocrystalline Cellulose (SNCC). Colloids Surf. A. 2016, 506, 789–793. DOI: 10.1016/j.colsurfa.2016.07.058.
  • Gaudreault, R.; Di Cesare, N.; Weitz, D.; van de Ven, T. G. M. Flocculation Kinetics of Precipitated Calcium Carbonate. Colloids Surf. A. 2009, 340(1), 56–65. DOI: 10.1016/j.colsurfa.2009.03.008.
  • Peng, P.; Garnier, G. Effect of Cationic Polyacrylamide on Precipitated Calcium Carbonate Flocculation: Kinetics, Charge Density and Ionic Strength. Colloids Surf. A. 2012, 408, 32–39. DOI: 10.1016/j.colsurfa.2012.05.002.
  • Bilgen, S.; Wills, B. A. Shear Flocculation — A Review. Miner. Eng. 1991, 4(3), 483–487. DOI: 10.1016/0892-6875(91)90148-O.
  • Mpofu, P.; Addai-Mensah, J.; Ralston, J. Flocculation and Dewatering Behaviour of Smectite Dispersions: Effect of Polymer Structure Type. Miner. Eng. 2004, 17(3), 411–423. DOI: 10.1016/j.mineng.2003.11.010.
  • Hogg, R. Flocculation and Dewatering. Int. J. Miner. Process. 2000, 58(1–4), 223–236. DOI: 10.1016/S0301-7516(99)00023-X.
  • Gregory, J. Monitoring Particle Aggregation Processes. Adv. Colloid Interface Sci. 2009, 147, 109–123.
  • Adachi, Y.; Feng, L.; Kobayashi, M. Kinetics of Flocculation of Polystyrene Latex Particles in the Mixing Flow Induced with High Charge Density Polycation near the Isoelectric Point. Colloids Surf. A. 2015, 471, 38–44. DOI: 10.1016/j.colsurfa.2015.02.011.
  • Feng, L.; Adachi, Y.; Kobayashi, A. Kinetics of Brownian Flocculation of Polystyrene Latex by Cationic Polyelectrolyte as a Function of Ionic Strength. Colloids Surf. A. 2014, 440, 155–160. DOI: 10.1016/j.colsurfa.2012.09.023.
  • Yang, Z.; Yang, H.; Jiang, Z.; Huang, X.; Li, H.; Li, A.; Cheng, R. A New Method for Calculation of Flocculation Kinetics Combining Smoluchowski Model with Fractal Theory. Colloids Surf. A. 2013, 423, 11–19. DOI: 10.1016/j.colsurfa.2013.01.058.
  • Yu, J.; Wang, D.; Ge, X.; Yan, M.; Yang, M. Flocculation of Kaolin Particles by Two Typical Polyelectrolytes: A Comparative Study on the Kinetics and Floc Structures. Colloids Surf. A. 2006, 290(1–3), 288–294. DOI: 10.1016/j.colsurfa.2006.05.040.
  • Urbina-Villalba, G.; Toro-Mendoza, J.; García-Sucre, M. Calculation of Flocculation and Coalescence Rates for Concentrated Dispersions Using Emulsion Stability Simulations. Langmuir. 2005, 21(5), 1719–1728. DOI: 10.1021/la048433t.
  • Thomas, D.; Judd, S.; Fawcett, N. Flocculation Modelling: A Review. Water Res. 1999, 33(7), 1579–1592. DOI: 10.1016/S0043-1354(98)00392-3.
  • Runkana, V.; Somasundaran, P.; Kapur, P. Mathematical Modeling of Polymer-induced Flocculation by Charge Neutralization. J. Colloid Interface Sci. 2004, 270(2), 347–358. DOI: 10.1016/j.jcis.2003.08.076.
  • Jeldres, R. I.; Concha, F.; Toledo, P. G. Population Balance Modelling of Particle Flocculation with Attention to Aggregate Restructuring and Permeability. Adv. Colloid Interface Sci. 2015, 224, 62–71. DOI: 10.1016/j.cis.2015.07.009.
  • Shouci, L.; Jingyong, G. Kinetics of Coagulation of Fine Mineral Particles in a Stirred Tank. Colloids Surf. A. 1994, 84(2), 195–205. DOI: 10.1016/0927-7757(93)02657-Z.
  • Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions. Colloids Surf. A. 2018, 538, 63–72. DOI: 10.1016/j.colsurfa.2017.10.061.
  • Zhu, L.; Tian, R.; Liu, X.; Xiong, H.; Li, H. A General Theory for Describing Coagulation Kinetics of Variably Charged Nanoparticles. Colloids Surf. A. 2017, 527, 158–163. DOI: 10.1016/j.colsurfa.2017.04.021.
  • Nasser, M.; James, A. The Effect of Polyacrylamide Charge Density and Molecular Weight on the Flocculation and Sedimentation Behaviour of Kaolinite Suspensions. Sep. Purif. Technol. 2006, 52(2), 241–252. DOI: 10.1016/j.seppur.2006.04.005.
  • Duzyol, S. Evaluation of Flocculation Behavior of Marble Powder Suspensions. Physicochem Prob Mineral Process. 2015, 51(1), 5–14.
  • Kurama, H.; Karaguzel, C. The Effect of Zeta Potential on the Sedimentation Behavior of Natural Stone Processing Effluent. Physicochem Prob Mineral Process. 2013, 49(2), 575–586.
  • Nourouzi, M. M.; Chuah, T. G.; Choong, T. S. Y. Optimization of Flocculation Process for Cut-stone Wastewater Effect of Rapid Mix Parameters. Desalin. Water Treat. 2012, 22(1–3), 127–132. DOI: 10.5004/dwt.2010.1652.
  • Espinasse, P.; Siffert, B. Acetamide and Polyacrylamide Adsorption on to Clays- Influence of the Exchangeable Cation and the Salinity of the Medium. Clays Clay Miner. 1979, 27(4), 279. DOI: 10.1346/CCMN.1979.0270406.
  • Yang, Y.; Wu, A.; Klein, B.; Wang, H. Effect of Primary Flocculant Type on a Two-step Flocculation Process on Iron Ore Fine Tailings under Alkaline Environment. Miner. Eng. 2019, 132, 14–21. DOI: 10.1016/j.mineng.2018.11.053.
  • Ersoy, B.; Tosun, I.; Günay, A.; Dikmen, S. Turbidity Removal from Wastewaters of Natural Stone Processing by Coagulation/Flocculation Methods. Clean - Soil Air Water. 2009, 37(3), 225–232. DOI: 10.1002/clen.200800209.
  • Ersoy, B. Effect of pH and Polymer Charge Density on Settling Rate and Turbidity of Natural Stone Suspensions. Int. J. Miner. Process. 2005, 75(3), 207–216. DOI: 10.1016/j.minpro.2004.08.011.
  • Bayel, D. K.; Karaca, Z.; Onen, V.; Deliormanli, A. H. The Relationship between Mineral Content and Flocculant Characteristics for Slurry Waste Water Recycling at Marble Processing Plants. Mine Water Environ. 2016, 35(3), 332–336. DOI: 10.1007/s10230-015-0367-z.
  • Smoluchowski, M. Versuch einer mathematischen theorie der koagulationskinetic kolloider lsungen. Z. Phys. 1917, 92, 129.
  • Smoczyński, L.; Mróz, P.; Wardzynska, R.; Załęska-Chróst, B.; Dłużyńska, K. Computer Simulation of the Flocculation of Suspended Solids. Chem. Eng. J. 2009, 152(1), 146–150. DOI: 10.1016/j.cej.2009.04.020.
  • Lee, C. S.; Robinson, J.; Chong, M. F. A Review on Application of Flocculants in Wastewater Treatment. Process Saf. Environ. Prot. 2014, 92(6), 489–508. DOI: 10.1016/j.psep.2014.04.010.
  • Hogg, R. Collision Efficiency Factors for Polymer Flocculation. J. Colloid Interface Sci. 1984, 102(1), 232–236. DOI: 10.1016/0021-9797(84)90215-7.
  • Gregory, J. Flocculation of Fine Particles. In Innovations in Flotation Technology; Mavros, P., Matis, K. A., Eds.; Springer Netherlands: Dordrecht, 1992, 101–110.
  • ŞENER, S. Removal of Suspended Solid Materials from the Wastewater of Natural Dimension Stone Cutting Plants by Flocculation. J. Sci. Technol. 2007, 1(2), 234–244.
  • Gregory, J.; Barany, S. Adsorption and Flocculation by Polymers and Polymer Mixtures. Adv. Colloid Interface Sci. 2011, 169(1), 1–12. DOI: 10.1016/j.cis.2011.06.004.
  • Pefferkorn, E. Polyacrylamide at Solid/liquid Interfaces. J. Colloid Interface Sci. 1999, 216(2), 197–220. DOI: 10.1006/jcis.1999.6312.
  • Pillai, J. Flocculants and Coagulants: The Keys to Water and Waste Management in Aggregate Production; Nalco Company (Stone review): Naperville, IL, 1997; pp 1–6.
  • Rattanakawin, C.; Hogg, R. Viscosity Behavior of Polymeric Flocculant Solutions. Miner. Eng. 2007, 20(10), 1033–1038. DOI: 10.1016/j.mineng.2007.04.008.
  • Franks, G. V. Stimulant Sensitive Flocculation and Consolidation for Improved Solid/liquid Separation. J. Colloid Interface Sci. 2005, 292(2), 598–603. DOI: 10.1016/j.jcis.2005.06.010.
  • Liu, S. Steric Effect: A Quantitative Description from Density Functional Theory. J. Chem. Phys. 2007, 126(24), 244103. DOI: 10.1063/1.2747247.
  • Ho, Y.-S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanitary Eng. Div. 1963, 89(2), 31–60.
  • Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153(1), 1–8. DOI: 10.1016/j.cej.2009.04.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.